全問題一覧

カテゴリ
以上
以下

問題文

$N$ を正の整数、$c>0$ を定数とする。実数の組 $(t_1,t_2,\ldots,t_N)$ に対して関数

$$
f_n(t_1,t_2,\ldots,t_N)=t_n(1-t_n)\left(c(1+t_n)-\sum_{i=1}^{N}t_i\right) \ \ \ (n=1,2,\ldots ,N)
$$

を考える。また、$N\times N$ 行列 $J(t_1,t_2,\ldots,t_N)$ を

$$
J(t_1,t_2,\ldots,t_N) =
\left(
\begin{array}{ccc}
\frac{\partial f_1}{\partial t_1} & \cdots & \frac{\partial f_1}{\partial t_N} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_N}{\partial t_1} & \cdots & \frac{\partial f_N}{\partial t_N}
\end{array}\right)
$$

と定義する。

$N=1000,\ \displaystyle{c=\frac{1000}{1.23}}$ として、以下の問いに答えよ。

(1)$1000$個の実数の組 $(x_1,x_2,\ldots,x_{1000})$ であって、$x_1\leq x_2 \leq \ldots \leq x_{1000} $ かつ

$$
f_n(x_1,x_2,\ldots,x_{1000})=0\ \ \ (n=1,2,\ldots ,1000)
$$

を満たすものはいくつあるか。

(2)(1)で考えた組のうち、$J(x_1,x_2,\ldots,x_{1000})$ の固有値の実部がすべて負であるようなものはいくつあるか。

解答形式

(1)の答えを半角数字で1行目に入力せよ。
(2)の答えを半角数字で2行目に入力せよ。

[C] Soft Spring

masorata 自動ジャッジ 難易度:
5月前

2

問題文

$a>0$ を定数とする。$t\geq0$ で定義された実数値関数 $x(t)$ について、以下の微分方程式の初期値問題を考える:

$$
\begin{cases}
\displaystyle x''(t)=-\frac{x(t)}{(1+\lbrace x(t) \rbrace^2)^2} \ \ \ (t\geq0)\\
\displaystyle x(0)=\frac{\sqrt2}{4}, \ x'(0)=a
\end{cases}
$$

(1)$\displaystyle \lim_{t \to +\infty}x(t)=+\infty$ となる $a$ の範囲は、$\displaystyle a \geq \frac {\fbox{ア}\sqrt{\fbox{イ}}}{\fbox{ウ}}$ である。
(2)$\displaystyle a = \frac {\fbox{ア}\sqrt{\fbox{イ}}}{\fbox{ウ}}$ のとき、$\displaystyle x(t)=\frac{3}{4}$ となる $t$ の値は $\displaystyle t = \frac {\fbox{エ}}{\fbox{オカ}}+\frac{\fbox{キ}}{\fbox{ク}}\log2$ である。ただし $\log$ は自然対数とする。

解答形式

ア〜クには、0から9までの数字が入る。同じ文字の空欄には同じ数字が入る。
(1)の答えとして、文字列「アイウ」を半角で1行目に入力せよ。
(2)の答えとして、文字列「エオカキク」を半角で2行目に入力せよ。
ただし、分数はそれ以上約分できない形で、根号の中身が最小になるように答えよ。

3年前

7

問題文

$f:{\mathbb R} \rightarrow {\mathbb R}$ は微分可能で、任意の $x,y \in {\mathbb R}$ に対して

$$
f(x+y)+f(x)f(y)=f(xy+1)
$$

を満たすとする。以下の空欄を埋めよ。

⑴ $f(0)=\fbox{アイ}$ または $f(0)=\fbox{ウ}$ が成り立つ。また、$f(0)=\fbox{アイ}$ のとき $f(1)=\fbox{エ}$ で、このとき $x \in {\mathbb R}$ を固定するごとに極限

$$
f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}
$$

を考えるとロピタルの定理の仮定をすべて満たしていることがわかる。よって同定理を用いて $f$ が満たす微分方程式を導くことができる。

⑵ $f$ が満たす微分方程式を解くことで、$f$ をすべて決定できる。特に $f(23)$ がとり得る値は $\fbox{オ}$ 通りあり、それらの値の総和は $\fbox{カキク}$ である。

解答形式

ア〜クには、0から9までの数字または「-」(マイナス)が入る。
⑴の答えとして、文字列「アイウエ」をすべて半角で1行目に入力せよ。
⑵の答えとして、文字列「オカキク」をすべて半角で2行目に入力せよ。


問題文

$a$ を実数の定数とする。正の実数値をとる関数 $y(x)$ は何回でも微分可能で、

$$
\begin{cases}
2yy''''+(y'')^2=2y'y'''+a & (x \in {\mathbb R})\\
y'(0)=y''(0)=0 \\
y'''(0)=y''''(0)=1
\end{cases}
$$

を満たすとする。$\displaystyle a=\frac{50}{17}$ のとき、($x$ が実数全体を動くときの)$y(x)$ の最小値は $\displaystyle \frac{\fbox{アイ}}{\fbox{ウエオ}}$ である。

解答形式

ア〜オには、0から9までの数字が入る。
文字列「アイウエオ」をすべて半角で1行目に入力せよ。
ただし、それ以上約分できない形で答えよ。