公開日時: 2024年10月3日13:44 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
xy平面上のにんいのn個の点に点をうつ。次にn個の点どうしをすべて線で結ぶ。このとき新たにできた交点の数をkとする。なお、L>=2のときL本の直線が一点で交わるとき交点の数は1/2*L(L-1)と数えるものとする。このときn=kとなるなら
とりうるnの値はいくつでしょう。
解答形式
数字だけ書いてください
公開日時: 2024年10月1日20:33 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ
y=sin2x/1+cos2x
公開日時: 2024年9月26日21:18 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$$f(xf(y)+y^2)=y^4(1+334x)$$
を素因数分解するとa^b*c^d...のようにあらわすことが出来るのでa+b+c+d+....を求めろ
非負整数で答えろ
公開日時: 2024年9月23日1:42 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$x>1 , y>1$で、
$α = log_4 x , β = log_8 y $ と定める。 $2α + 3β =2 $ のとき、$x+y $ のとりうる最小の値を求めよ。