Twitterログイン廃止のお知らせ (2023年2月3日8:45)
本サービスは、2/8をもちましてTwitterログインの提供を停止します。2/9以降、Twitterログインができなくなりますのでご注意ください。該当するユーザーは、至急対応をよろしくお願いいたします。 詳細はこちら→ https://pororocca.com/news/30

数学の問題一覧

カテゴリ
以上
以下

hinu

公開日時: 2020年8月30日18:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

KOH-MC

A君は $38\times 57$ を次のように計算した。

$$
\newcommand{\nc}{\newcommand}
\nc{\wake}[1]{\begin{cases} #1 \end{cases}}
\nc{\f}[2]{\dfrac{#1}{#2}}
\nc{\s}[1]{\{#1\}}
\nc{\pmat}[1]{\begin{pmatrix} #1 \end{pmatrix}}
\nc{\lr}[1]{\left( #1 \right)}
\nc{\com}[2]{{}_{#1}{\rm C}_{#2} \right)}
\nc{\bar}[1]{{\overline{#1}}}
\nc{\bb}[1]{{\mathbb {#1}}}
\nc{\rmn}[1]{{\rm #1}}
\nc{\q}{\quad}
\nc{\x}{\times}
\nc{\a}{\alpha}
\nc{\b}{\beta}
\nc{\th}{\theta}
\nc{\Q}[1]{\fbox{#1}}
\nc{\qq}{&\q\q\q\q\q&}\begin{eqnarray}38\qq 57 \qq \rm x\\19\qq 114\qq \rm o\\9\qq 228\qq \rm o\\4\qq 456\qq \rm x\\2\qq 912\qq \rm x\\1\qq \underline{1824}\qq \rm o\\ \qq 2166\qq \rm \\\end{eqnarray}
$$

A君の計算方法に基づいて以下の $43\x 71$ の計算の空欄を埋めよ。

$$
\nc{\qq}{&\q\q\q\q\q&}\begin{eqnarray}43\qq 71 \qq \rm o\\\Q{ア}\qq \Q{オ}\qq \rm \Q{ケ}\\\Q{イ}\qq \Q{カ}\qq \rm \Q{コ}\\\Q{ウ}\qq \Q{キ}\qq \rm \Q{サ}\\\Q{エ}\qq \Q{ク}\qq \rm \Q{シ}\\1\qq \underline{2272}\qq \rm o\\ \qq 3053\qq \rm \\\end{eqnarray}
$$

解答を改行区切りで入力せよ。ただし $\Q{ア}$ から $\Q{ク}$ には 1 から 9999 までの整数が入り、 $\Q{ケ}$ から $\Q{シ}$ には o または x が入る。

hinu

公開日時: 2020年6月28日18:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

KOH-MC

問題文

$x=0$ で微分可能な実数値連続関数 $f(x),g(x)$ は任意の実数 $x,y$ に対して以下の式を満たすとする。以下の空欄を埋めよ。

$$
f(x+y)=f(x)g(y)+g(x)f(y)\\g(x+y)=g(x)g(y)-f(x)f(y)
$$

$f'(0)=2,g'(0)=1$ であるとする。今 $f(0)=\fbox{ア},g(0)=\fbox{イ}$ であるので

$$
\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}=\fbox{ウ}f(x)+\fbox{エ}g(x)\\\lim_{h\to 0}\frac{g(x+h)-g(x)}{h}=\fbox{オ}f(x)+\fbox{カ}g(x)
$$

となる。 $h(x)=(f(x))^2+(g(x))^2$ とおくと

$$
h'(x)=\fbox{キ}h(x)
$$

これより

$$
\dfrac{d}{dx}(h(x)e^{-\fbox{キ}x})=\fbox{ク}
$$

がわかるので、

$$
h(x)=\fbox{ケ}e^{\fbox{コ}x}
$$

を得る。

解答形式

半角数字で改行区切りで記述せよ。たとえば $\fbox{ア}$ に $100$ , $\fbox{イ}$ に $-99$ と答えたい場合には1行目に $100$ , 2行目に $-99$ を記述せよ。

tb_lb

公開日時: 2021年5月30日23:21 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 角度

$【補助線主体の図形問題 #016】
 先週は出題を休んでしまいましたが、今週はしっかり出題します。今回は求角問題を用意しました。暗算解法を仕込んであるのはいつも通り。ぜひぜひ補助線の魅力を感じてください!

解答形式

${}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。
(例) $12^{\circ}$ → $\color{blue}{12.00}$  $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$
 入力を一意に定めるための処置です。関数電卓やグーグルの電卓機能、Wolfram|Alphaなどのご利用をお勧めします。

tb_lb

公開日時: 2022年3月20日23:23 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 面積

【補助線主体の図形問題 #050】
 今週の図形問題はおなじみの図形を積み上げる趣向でお送りします。図形の数の多さにひるむかもしれませんが、補助線をうまく引ければ暗算でも処理できるように仕込んであります。どうぞ補助線の威力を存分にお楽しみください!

解答形式

${}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\ \mathrm{cm}^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\ \mathrm{cm}^2$ → $\color{blue}{14.14}$
 入力を一意に定めるための処置です。$\pi=3.14$とは限りませんのでご注意ください。関数電卓やグーグルの電卓機能、Wolfram|Alphaなどのご利用をお勧めします。

aoneko

公開日時: 2021年6月9日5:50 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

必要条件 十分条件 集合

問題文

任意の集合$p$と$q$があるとし、$\bar{p},\bar{q}$はそれぞれ$p,q$の補集合であるとする

「$\bar{p}$が$q$であるための必要条件」であることは、
「$p$が$\bar{q}$であるための必要十分条件」であるための
1.必要十分条件である
2.必要条件であるが十分条件ではない
3.十分条件であるが必要条件ではない
4.必要条件でも十分条件でもない

解答形式

番号で入力してください。

ryno

公開日時: 2022年10月15日17:45 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

mod 余り

問題文

73²⁰²³を17で割った余りを求めよ。

解答形式

半角で答えてください

aoneko

公開日時: 2021年1月19日22:32 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 採点者ジャッジ


問題文

≪aは定数とする。xの関数f(x)に対しf(a)とは、f(x)にx=aを代入した値である。例えば、f(x)=2xが与えられれば、f(2)の値は4となる≫

f(x)=3x−1についてf(a+1)をaを用いて表せ

aoneko

公開日時: 2021年1月19日22:32 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

≪aは定数とする。xの関数f(x)に対しf(a)とは、f(x)にx=aを代入した値である。例えば、f(x)=2xが与えられれば、f(2)の値は4となる≫

f(x)=3x−1についてf(a+1)をaを用いて表せ

zyogamaya

公開日時: 2021年1月15日18:15 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

どの辺の長さも整数である$\triangle ABC$の面積を$S$とする。$S^2$の小数部分を求めよ。

解答形式

とりうるすべての小数部分を小さい順に都度改行、列挙してください。
例:
「0,1/2,1/3,1/6,1/√5」の場合、

0
0.5
0.'3'
0.1'6'
1/\sqrt{5}

Kinmokusei

公開日時: 2020年9月3日21:09 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

※解答形式に注意!

図のように配置された3つの正三角形があります。青い線分の長さを求めてください。
ただし、赤、紫、緑の線分の長さはそれぞれ1,2,3で、隣り合う正三角形の間の角は30°です。

解答形式

答えは自然数$A,B$を用いて$A\sqrt{B}$の形に表せます。$A+B$を解答してください。
ただし、根号の中はできるだけ小さい自然数にしてください。

tb_lb

公開日時: 2021年6月27日22:16 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 長さ

【補助線主体の図形問題 #019】
 1週空いての久しぶりの出題となりました。今回はガリガリ長さを求める解法から暗算解法まで解法の種類多めとなっています。腕に覚えのある方は暗算解法だけでなく、解法の数にも挑戦してもらえたら嬉しいです!

解答形式

${}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\ \mathrm{cm}$ → $\color{blue}{12.00}$  $10\sqrt{2}\ \mathrm{cm}$ → $\color{blue}{14.14}$
 入力を一意に定めるための処置です。$\pi=3.14$とは限りませんのでご注意ください。関数電卓やグーグルの電卓機能、Wolfram|Alphaなどのご利用をお勧めします。

Kinmokusei

公開日時: 2020年12月19日19:56 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

長方形$ABCD$を底面とする四角錐$P-ABCD$があります。$PA=1,PB=4,PC=8$のとき、$PD$の長さを求めてください。

解答形式

半角数字で解答してください。