[C] A Downward Tower

halphy 自動ジャッジ 難易度: 数学 > 大学数学
2020年8月30日18:00 正解数: 2 / 解答数: 2 (正答率: 100%) ギブアップ不可
KOH-MC
この問題はコンテスト「KOH Mathematical Contest #3」の問題です。

問題文

$n=0,1,\cdots$ に対し,$I_n$を
$$
I_n=\sum_{k=0}^{\infty}\frac{1}{2^{k}k!(2n+2k-1)!!}
$$で定める。ただし $(-1)!!=1$ とする。この級数は収束することが知られている(例えば,ダランベールの判定法を適用すればよい)。特に
$$
I_0+I_1=\fbox{ア}
$$である。また,$\{I_n\}$ は漸化式
$$
I_{n-1}-I_{n+1}=(\,\fbox{イ}\,n-\fbox{ウ}\,)I_n\quad(n=1,2,\cdots)
$$を満たし
$$
\lim_{n\to\infty}\frac{I_{n+1}}{I_n}=\fbox{エ}
$$が成り立つ。これらの結果を用い,漸化式を変形すると
$$
1+\cfrac{1}{3+\cfrac{1}{5+\cfrac{1}{7+\cfrac{1}{\ddots}}}}=\frac{\fbox{オ}^{\fbox{カ}}+\fbox{キ}}{\fbox{ク}^{\fbox{ケ}}-\fbox{コ}}
$$が得られる。ただし $\fbox{オ}\neq\fbox{キ}$ とする。

注意

自然数 $n\geq 1$ に対し,$n!!$ は $1$ 個とばしの階乗を表す。例えば,$n$ が奇数のとき
$$
n!!=n(n-2)(n-4)\cdots 3\cdot 1
$$である。

解答形式

空欄 $\fbox{ア}$ 〜 $\fbox{コ}$ には,半角数字 0 - 9 ,記号 - ,円周率 π ,自然対数の底 e のいずれかが当てはまります。$\fbox{ア}$ 〜 $\fbox{コ}$ に当てはまるものを改行区切りで入力してください。


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

[E]積分の入った極限値

fusshi 自動ジャッジ 難易度:
3年前

3

問題文

$\displaystyle f(x)=\int_{0}^{1}\frac{(1+xt^2)-e^{xt^2}}{t\cdot e^{xt^2}}dt$とおく。
1 $\displaystyle \lim_{x \to 0}\frac{f(x)}{x^p}$が有限値となる$p$とその極限値$\alpha$を求めよ。
2 $\displaystyle \lim_{x \to \infty}\frac{f(x)}{(\log{x})^q}$が有限値となる$q$とその極限値$\beta$を求めよ。

解答形式

$p=\fbox{ア}$
$\alpha=\displaystyle-\frac{\fbox{イ}}{\fbox{ウ}}$
$q=\fbox{エ}$
$\beta=\displaystyle-\frac{\fbox{オ}}{\fbox{カ}}$
である。$\fbox{ア}$から順に1行ごとに答えよ。

3年前

4

問題文

数列$~\{a_n\},~\{b_n\}$を相異なる2つの実数$~\alpha,\beta~$を用いて以下のように定義する。
$$
a_n = \cfrac{1}{\displaystyle{\sum_{k=0}^n}\alpha^{n-k}\beta^{k}}~~~,~~~b_n = \sum_{m=0}^\infty\frac{1}{a_mn^{m+2}}
$$ただし、$\{b_n\}~$は$n\geq 2$で定義されるものとする。$\alpha,\beta~$が
$$
\begin{cases}
\alpha + \beta = 1\\
|\alpha||\beta| = 1
\end{cases}
$$を満たすとき、
$$
a_k = b_k
$$となる最小の自然数$~k~$は$~k=\fbox{ア}\fbox{イ}$であり、このとき$~b_k = \cfrac{\fbox{ウ}}{\fbox{エ}\fbox{オ}}$である。

解答形式

ア〜オには0から9までの数字のいずれかが入る。
数字列「アイウエオ」をすべて半角で入力し解答せよ。
ただし、分数は既約分数の形にすること。

[F] Slow and Steady

halphy 自動ジャッジ 難易度:
3年前

3

問題文

$n$ を自然数とする。置換 $\sigma\in \mathfrak{S}_n$ に対して,$\sigma$ の近道度 $m(\sigma)$ を次のように定義する。

  • $\sigma$ を 互いに素な(共通元をもたない) 巡回置換の積に表したとき,各巡回置換の長さの積の逆数を $m(\sigma)$ とする。(太字部分は19:42追記)

例えば $\sigma=(1 4 2)(5 6 7)(3)\in \mathfrak{S}_7$ なら,$\sigma$ は長さ $3, 3, 1$ の巡回置換からなるから,$\sigma$ の近道度 $m(\sigma)$ は

$$
m(\sigma)=\frac{1}{3\cdot 3\cdot 1}=\frac{1}{9}
$$

である。自然数 $n$ に対して,${1,\cdots, n}$ の置換(これは $n!$ 通りある)の近道度の平均を

$$
f_n=\frac{1}{n!}\sum_{\sigma\in \mathfrak{S}_n} m(\sigma)
$$

とおく。

$$
f_1=1, \; f_2=\frac{\fbox{ア}}{\fbox{イ}}, \; f_4=\frac{\fbox{ウエオ}}{\fbox{カキク}}
$$

であり,

$$
\sum_{n=0}^{\infty} f_n=\fbox{X}
$$

である(級数が収束することは証明なしに認めてよい)。ただし $f_0=1$ と約束する。

※ $\mathfrak{S}_n$ は $n$ 次対称群を表す(19:03追記)。

解答形式

$\fbox{ア}$ 〜 $\fbox{ク}$ には 0 - 9 の数字が当てはまります。$\fbox{ X }$にはある実数が当てはまります。空欄のある分数はすべて既約です。

  • 1行目 には $\fbox{ア}$ に当てはまる数を半角で入力してください。
  • 2行目 には $\fbox{イ}$ に当てはまる数を半角で入力してください。
  • 3行目 には $\fbox{ウエオ}$ に当てはまる数を半角で入力してください。
  • 4行目 には $\fbox{カキク}$ に当てはまる数を半角で入力してください。
  • 5行目 には $\fbox{ X }$ に当てはまる数を入力します。答えを $10$ 進小数で表し,小数第2位を四捨五入して小数第1位まで求めてください。例えば,$9.876\cdots $ が答えになる場合は 9.9 と解答してください。

ヒント

  • $f_0,\cdots, f_{n-1}$ を使って $f_n$ を表すことができます。
  • $f_n$ の母関数を $f(t)=\displaystyle{\sum_{n=0}^{\infty}} f_nt^n$ とおくと,$f(t)$ はとある微分方程式を満たします。

双六と確率

Aoi 自動ジャッジ 難易度:
40日前

2

双六でnマス目に止まる確率を求めよ。
ただし、n≦10、さいころは1個とする。

解答形式

初投稿で難易度設定とか解答の作り方とかよく分かってないので間違っていたらすみません。
・アルファベット&記号は全て半角(ただし、マイナスについては基本的に「ー」を使い、aのb-1乗のような場合では「-」を使います。)
・a分のbのc乗→(b/a)^c
・b/a+d/cのようなものは1項にまとめてください。
・場合分けがある場合は
n≦aのとき(解答)
b≦n≦cのとき(解答)
といったように改行して答えてください。

2024⑥

7777777 採点者ジャッジ 難易度:
11日前

1

問題文

$2024!$の約数の和は$2025$の倍数であることを示せ。

[F] 執根号神

masorata 自動ジャッジ 難易度:
3年前

1

問題文

$4$ 点 $\mathrm{A,B,C,D}$ が $\mathrm{AB=BC=CD}=1,\mathrm{DA}=2$ を満たし、さらに線分 $\mathrm{BC}$ と線分 $\mathrm{DA}$ が点 $\mathrm{P}$ で交わっている。線分 $\mathrm{AP}$ の長さが最大となるとき、

$$
\mathrm{AC}=\frac{\sqrt{\fbox{アイ}-\sqrt{\fbox{ウエオ}\ }+\sqrt{\fbox{カキクケ}+\fbox{コサ} \sqrt{\fbox{シスセ}\ }\ }\ }}{\fbox{ソ}}
$$

である。ただし、$\mathrm{XY}$ で線分 $\mathrm{XY}$ の長さを表すものとする。

ヒント

必要であれば以下の事実を用いてよい。

・実数 $a,b,c$(ただし $a\neq-64$ )について、$\displaystyle p=\frac{b+c-a^2}{a+64},q=64p+a^2-b$ とおくと、$x$ についての恒等式

$$
1024x^4+64ax^3+bx^2+2cx+p^2-q=(32x^2+ax+p)^2-q(x-1)^2
$$

が成り立つ(これは、右辺を展開して係数比較することで簡単に確かめられる)。

解答形式

ア〜ソには、0から9までの数字または「-」(マイナス)が入る。
文字列「アイウエオカキクケコサシスセソ」を半角で1行目に入力せよ。
ただし、分数はそれ以上約分できない形で、かつ根号の中身が最小になるように答えよ。

No.08 絶対値を含む命題

Prime-Quest 自動ジャッジ 難易度:
2月前

1

問題

次の関数 $x,y$ における定数 $c$ の命題「つねに $x\geqq 3$ ならば $y$ の値域幅は $c$ 以上」は真か.$$0\leqq t\leqq 2c,\quad x=|t-c|+|t-3|+|t-5|,\quad y=|||t-1|-2|-3|$$

解答形式

逆,裏,対偶それぞれの整数反例の和を半角数字で入力してください.


問題

$n$を $0$ でない実数とします。以下の定積分を求めてください。

解答形式

答えだけでもいいですが、方針があると嬉しいです。

[E] Centrosymmetry

halphy 自動ジャッジ 難易度:
3年前

4

問題文

$P$ を $n\times n$ 行列とする。$P$ の第 $(i, j)$ 成分と第 $(n-i+1, n-j+1)$ 成分がつねに一致するとき,$P$ を点対称行列と呼ぶことにする。例えば $n=4$ なら,$P$ は一般に

$$
P=\begin{pmatrix} a & b & h & g \\ c & d & f & e \\ e & f & d & c \\ g& h & b & a \end{pmatrix}
$$

という形をしている。$E'$ を $4\times 4$ の単位行列とし,$4\times 4$ 行列 $J'$ を

$$
J'=\begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}
$$

で定義する。

(1) 一般の $4\times 4$ 行列 $X$ に対して,$XJ'$ の $(\fbox{ア},\fbox{イ})$ 成分と $X$ の $(1,2)$ 成分は一致する。また,$J'X$ の $(\fbox{ウ},\fbox{エ})$ 成分と $X$ の $(1,2)$ 成分は一致する。よって, $4\times 4$ 行列 $P$ が点対称行列であることは,$J'PJ'=P$ が成り立つことと同値である。

(2) $E$ を $2\times 2$ の単位行列とし,$2\times 2$ 行列 $J$ を

$$
J=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
$$

で定義する。$4\times 4$ 点対称行列 $P$ が,ある $2\times 2$ 行列 $A,B,C,D$ を用いて

$$
P=\begin{pmatrix} A & B \\ C & D \end{pmatrix}
$$

と表せたとする。(1) と同様の考察より,$D=JAJ, B=JCJ$ である。$4\times 4$ 行列 $Q$ を

$$
Q=\frac{1}{\sqrt{2}}\begin{pmatrix} E & -J \\ J & E \end{pmatrix}
$$

で定めると,$Q^{\rm T}Q=\fbox{オ}$ であり

$$
Q^{\rm T}PQ=\begin{pmatrix} \fbox{カ}+\fbox{キク} & \fbox{ケ} \\ \fbox{コ} & \fbox{サシス}-\fbox{セソ} \end{pmatrix}
$$

が成り立つ。

(3) $p$ を実定数とする。(2) の結果を利用して,行列

$$
P=\begin{pmatrix} 0 & p & 0 & 1-p \\ 0 & p^2 & 1-p & p(1-p) \\ p(1-p) & 1-p & p^2 & 0 \\ 1-p & 0 & p & 0 \end{pmatrix}
$$

の固有値を求めよう。$p=\cfrac{13}{15}$ のとき,$P$ の固有値は大きい順に

$$
\fbox{タ}, \frac{\fbox{チ}}{\fbox{ツ}}, \frac{\fbox{テ}}{\fbox{トナ}}, \frac{\fbox{ニ}}{\fbox{ヌネノ}}
$$

である。

解答形式

空欄 $\fbox{ア}$ 〜 $\fbox{ノ}$ には,半角数字 0 - 9 ,記号 - ,4×4行列 E', J' ,2×2行列 E, J, A, C, O のいずれかが当てはまります(B, Dを使って解答することはできません。O は零行列を表します)。$\fbox{ア}$ 〜 $\fbox{ノ}$ に当てはまるものを改行区切りで入力してください。分数はこれ以上約分できない形で解答してください。

解の配置問題

zyogamaya 自動ジャッジ 難易度:
3年前

5

問題文

$x$に関する3次方程式$x^3+ax+b=0$($a,b$は実数)の3解の絶対値がすべて1以下となる$a,b$の必要十分条件が表す領域を$ab$平面に図示し、その面積を求めよ。

解答形式

面積の値のみを解答してください。答えは分数になるので/を用いて入力してください。
例:$\displaystyle\frac{5}{7}$→5/7

求長問題14

Kinmokusei 自動ジャッジ 難易度:
3年前

2

問題文

半径21の扇形に図のように線を引きました。青い三角形の面積が213のとき、赤い線分の長さを求めてください。

※高校数学カテゴリに入れてますが、中学数学範囲での綺麗な解法をTwitterにて頂きました。是非考えてみてください。

解答形式

解答は既約分数$\frac{\fbox{アイウ}}{\fbox{エ}}$となります。文字列「アイウエ」を解答してください。
ただし、$\fbox ア ~ \fbox エ$には$0$以上$9$以下の整数が入ります。

ハノイの塔

KNKR_UT 自動ジャッジ 難易度:
2年前

2

問題文

3本の杭と中央に穴のあいた大きさの異なる$n$枚の円盤があります。いま、杭の1つにすべての円盤が小さいものが上にくるように積み重なっています(初期状態)。この状態から下記のルールを守りながら操作を行うとき、初期状態から到達し得る状態は何通りありますか。ただし初期状態も1通りと数え、また3本の杭は区別することとします。

例えば「左端の杭に大きさ1から$n$の全ての円盤が積み重なっている状態」を1つ、そこから操作を一回だけ行い、「左端に大きさ2から$n$の円盤、真ん中に大きさ1の円盤が積み重なっている状態」を1つ、のように状態の数をカウントします。また、「真ん中の杭に大きさ1から$n$の全ての円盤が積み重なっている状態」と、「右端の杭に大きさ1から$n$の全ての円盤が積み重なっている状態」のように杭が異なる場合もそれぞれ別の状態としてカウントします。

ルール
  • 円盤は一回に一枚ずつしか移動できない。
  • 小さな円盤の上に大きな円盤を乗せることはできない。

解答形式

半角英数字と下記の半角記号で答えてください。式中にスペースを含めないでください。

使える記号
  • 「+」加算
  • 「-」減算
  • 「*」乗算
  • 「/」除算(分数)
  • 「( )」かっこ
  • 「^」冪乗
  • 「!」階乗