これは公開リストです。

第42回韓国大学生数学競技大会 1分野

writer: nflight11 / ジャンル: 数学 / 難易度:

2024年11月2日に開催された韓国大学生数学競技大会の1分野の問題です.
1分野は数学とその関連専攻あるいは複数専攻者を対象にしています.

全部で7問, 制限時間は150分です.
紙とペンの使用のみが許可されています. 電卓, インターネット, その他のツールの使用は一切許可されていません.

第 1 問 1分野 問1 / 2分野 問1 writer : nflight11

問題文

次の行列 $A$ に対して等式 $A^5 = aA^2+bA+cI$ が成立するる実数 $a, b, c$ を求めなさい. ただし, $I$ は $3\times3$ 単位行列である.
$$A=\begin{pmatrix} 0 & 1 & 1 \\ -1 & 0 & 1 \\ -1 & -1 & 0 \end{pmatrix}$$

解答形式

$a, b, c$ を空白で区切って1行に入力してください. 例えば $(a,b,c)=(7,15,92)$ であれば解答として 7 15 92 を入力してください.

第 2 問 1分野 問2 writer : nflight11

問題文

3次元座標空間で式 $4z^2=x^2+y^2-1$ を満たす点 $(x,y,z)$ の集合からなる曲面を $S$ とします. 点 $P(1,2,1)$ を通る直線のうち, 正確に二つが $S$ に完全に含まれることを示してください.

またこの二つの直線が成す鋭角を $\theta$ とする時, $\cos\theta$ を求めなさい.

解答形式

最初の行に $\cos\theta$ を入力してください.
2列目は空白にしておいてください.
3行目から証明過程をできるだけ詳しく作成してください.

第 3 問 1分野 問3 / 2分野 問4 writer : nflight11

問題文

次の式を満足す実数 $N$ を求めなさい.

$$\sum_{k=1}^{2024}(2025-k) \cdot 2024^k \cdot 2025^{2024-k} = 2024^N$$

解答形式

$N$ をそのまま入力してください.

第 4 問 1分野 問4 writer : nflight11

問題文

$37^{2024}$ の十の位と一の位の数をもとめてください.

解答形式

$37^{2024}$ の十の位と一の位の数を空白で区切って1行に入力してください.
例えば $37^{2024}$ の十の位が $0$ で一の位が $2$ の場合は 0 2 のように入力してください。

第 5 問 1分野 問5 writer : nflight11

問題文

実数全体で定義された実関数 $f$ は二度微分可能であり, $f^{\prime\prime}$ が連続である. そしてすべての実数 $x$ に対して $f^{\prime}(x) > 0, f^{\prime\prime}(x) < 0$ である.

このとき, 任意の正の実数 $t$ に対して次の式が成立することを証明しなさい.

$$\left|\int_0^t\cos{f(x)}dx\right| \le \frac{2}{f^\prime (t)}$$

解答形式

証明過程をできるだけ詳しく作成してください.

第 6 問 1分野 問6 writer : nflight11

問題文

次の二つの条件を満たす $n$ 個の実数 $a_1, a_2, \cdots, a_n$ に対して $\left(\sum_{k=1}^{n-1}a_ia_{i+1}\right)+a_na_1$ の最大値を求めなさい. ただし, $n\ge 3$ である.

$$\begin{matrix}a_1+a_2+\cdots+a_n=0, & a_1^2+a_2^2+\cdots+a_n^2=1\end{matrix}$$

解答形式

最初の行に $\left(\sum_{k=1}^{n-1}a_ia_{i+1}\right)+a_na_1$ の最大値を入力してください.
2列目は空白にしておいてください.
3行目から証明過程をできるだけ詳しく作成してください.

第 7 問 1分野 問7 / 2分野 問7 writer : nflight11

問題文

2次元座標平面上の有限な閉じた凸領域 $\mathcal{D}$ に対し, $\mathcal{D}$ の境界 $\beta=\partial\mathcal{D}$ が次を満たすとします.

(1) $\beta$ は滑らかな単純閉曲線です.
(2) $\beta$ 上の任意の点 $O$ に対して $O$ を中心とする半径が $1$ である円は $\beta$ との交点を正確に $2$ つ持ちます.
(3) $\beta$ 上の任意の点 $O$ に対し, $O$ で $\beta$ と接する直線は $\beta$ と $O$ 以外の交点を持ちません.

両端が $P, Q$ で, 中点が $M$ の長さ $1$ の棒を考えましょう. この棒の両端点が常に $\beta$ の上に置かれるように棒を曲線に沿って一周すると, つまり $\beta$ に沿って二点 $P, Q$ を連続的に一周すると $M$ の跡は単純閉曲線 $\gamma$ になります。
この時, 二つの曲線 $\beta,\gamma$ の間にある領域の広さが $\frac{\pi}{4}$ であることを証明しなさい.

解答形式

証明過程をできるだけ詳しく作成してください.