四角形$ABCD$があり、次の条件を満たします。
$∠A=∠B=∠C, ∠D=135°, BC=4\sqrt{6}, CD=8$
この四角形の面積$S$は$a + \sqrt{b}$の形で表されるので、$a + b$を解答してください。
半角数字で答えをそのまま入力。
問題に不備等あればtwitterのDMなどで気軽にお願いします。
Tex初めて使いました。
問題思いつくのは簡単なんですけど、解説は未だに上手く書けませんね…
θに関する方程式
$$
sinθ=5
$$ の解を求めよ。
例)$$「A±B」$$の形で入力してください。純虚数が係数として出てくる場合は項の1番前に持ってきてください。nを整数とする、などの記述はしなくても大丈夫です。「±」は、「プラスマイナス」と入力すれば出てきます🍀
$ω=e^{\frac{2πi}{7}}$を原始 7 乗根とする$A=ω+ω 2 +ω 4$および$B=ω 3 +ω 5 +ω 6$ とおくとき、$A^3 +B^3$ の値を求めよ。
半角英数字入力してください。
1枚の硬貨を8回投げる。硬貨を1枚投げ, 表が出る確率, 裏が出る確率はともに$\frac{1}{2} $である。このとき、$k$回目(1$≦$$k$$≦$8)に表が出たら$X_{k}$=1, 裏が出たら$X_{k}$=0として, $X_{1}$, $X_{2}$,・・・, $X_{8}$を定める。
$$\sum_{k=1}^{6}X_{k} X_{k+1} X_{k+2}=0$$となる確率を求めよ。
互いに素な自然数$a,b$を用いて, 求める確率は$\frac{a}{b} $と表されるので、$a+b$の値を入力してください。
$\sin \angle BAC = \dfrac{7}{8}$ を満たす鋭角三角形 $ABC$ について,$B$ から $AC$ に下ろした垂線の足を $D$,$C$ から $AB$ に下ろした垂線の足を $E$ とします.また,線分 $BC$ 上に点 $F$ を $\angle DEF = 90^\circ$ を満たすように取ったところ $BF=2, CF=6$ が成立しました.このとき,三角形 $ABC$ の面積の二乗を求めてください.ただし,答えは互いに素な正整数 $a,b$ を用いて $\dfrac{b}{a}$ と表されるので,$a+b$ の値を解答してください.
半角整数値で解答してください.
$AB<AC$ で,線分 $AB,AC$ の長さが正整数値である三角形 $ABC$ について,半直線 $CB$ 上で線分 $BC$ 上でないところに点 $D$ ,半直線 $BC$ 上で線分 $BC$ 上でないところに点 $E$ をそれぞれ置く.また,三角形 $ADE$ の外接円と直線 $AB,AC$ との交点のうち,$A$ でないほうをそれぞれ $P,Q$ とする.$4$ 点 $B,P,Q,C$ が同一円周上にあり,$DB=9,BC=45,CE=5$ のとき,線分 $PQ$ の長さとしてあり得る値の総和は互いに素な正整数 $a,b$ を用いて $\displaystyle\frac{a}{b}$ と表せるので,$a+b$ を解答してください.
半角数字で入力してください。