公開日時: 2026年1月7日0:26 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
数列${a_n},{b_n},{c_n}$を
$a_1=300,b_1=400,c_1=500$
$a_{n+1}=\dfrac12\sqrt{2b_n^2+2c_n^2-a_n^2}$
$b_{n+1}=\dfrac12\sqrt{2c_n^2+2a_n^2-b_n^2}$
$c_{n+1}=\dfrac12\sqrt{2a_n^2+2b_n^2-c_n^2}$
で定めるとき、3辺を$a_n,b_n,c_n$とする三角形の面積を$S_n$とする。
この三角形が退化しないことは証明できるので、$S_8$の値を求めよ。ただし、求めるべき値は互いに素な正整数$a,b$を用いて$\dfrac a b$と表せるので$a+b$を解答せよ。
公開日時: 2026年1月6日15:45 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ
座標平面上に点 P_k, Q_k を以下の規則に従ってとる。各試行においてサイコロを投げ、出た目を m = {1, 2, 3, 4, 5, 6} とする。
• 試行回数 n が奇数 (n = 2k - 1) のとき:
点 P_k (cos 2π/m, sin 2π/m)
• 試行回数 n が偶数 (n = 2k) のとき:
点 Q_k (cos -2π/m, sin -2π/m)
(1) n = 1, 2, 3, 4 回目のサイコロの目が順に 1, 4, 3, 6 であったとき、4点 P_1, Q_1, P_2, Q_2 が作る四角形の面積 S を求めよ。
(2) n = 4 のとき、出現した4点が正方形となる確率を求めよ。
(3) n 回の試行で得られた点集合を V_n = {P_1, Q_1, ..., P_k, Q_k} (ただし n = 2k または 2k - 1) とする。V_n から異なる4点を選んで作れる四角形の面積を S とし、同一の V_n 内における S の最大値を Smax、最小値を Smin とする。
このとき、比 R = Smax / Smin について、以下の問いに答えよ。
(i) 出目の組み合わせによって、比 R が最大値を取り得る最小の試行回数 N を求めよ。
(ii) n = N のとき、R が最大値をとる確率 P を求めよ。
記述もお願いします
公開日時: 2026年1月6日10:15 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ
$m,n$を整数とします。
$$(m+n)!+2025^{{n}^{m}}=2026^{mn+1}$$
を満たす組$(m,n)$について、$mn$の総積を
求めてください。
半角数字で入力してください。
公開日時: 2026年1月5日3:10 / ジャンル: その他 / カテゴリ: その他 / 難易度: / ジャッジ形式: 自動ジャッジ
AB
CDEFGH
CDEFGH
CDEFGH
CDEFGH
CDEFGH
CDEFGH
CDEFGH
CDEFGH
IJKLMNOP
同じアルファベットは同じ文字に対応しています
ひらがなで解答してください
公開日時: 2026年1月4日22:09 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ
${}$ 西暦2026年問題第4弾です。見た目こそ覆面算風味の整数問題ですが、はたして……? 桁数の多い計算が待っていますので、適宜電卓をお使いください。
${}$ 解答は1行目に$x$の値を、2行目に$d$の値を、それぞれ半角で入力してください。「$x=$」「$d=$」といった記載は不要です。
(例)$x=$104、$d=$4 → 《1行目》$\color{blue}{104}$、《2行目》$\color{blue}{4}$
公開日時: 2026年1月4日11:13 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$n$進法でも$n+1$進法でも$3$桁の回文数になるような正の整数をn-今年の数と定義します.
たとえば,$2026$は$13$進法で$BCB_{(13)}$,$14$進法で$A4A_{(14)}$となるので13-今年の数です.
すべての7-今年の数について,その総和を求めてください.
ただし,$n$進法における$3$桁の回文数とはある正整数$X(1\le X\le n-1),Y(0\le X\le n-1)$を用いて$XYX_{(n)}$と表せる数のこととします.