全問題一覧

カテゴリ
以上
以下

2025年

SU-JACK 自動ジャッジ 難易度:
56日前

5

問題文

$$
a_1=b_1=2025,
\begin{cases} a_{n+1}=a_n-2n+b_{2028}\\ b_{n+1}=b_n+4n+a_{2028}\end{cases}
$$

について、$a_n$の一般項を
$$a_n=α−(n−1)(n−β)$$と表したとき、$β$の値を求めよ

[A] 百の産声

masorata 自動ジャッジ 難易度:
2月前

24

問題文

次の和を $10$ 進小数で表し、小数第 $61$ 位から第 $70$ 位までを求めよ。
$$
\sum_{n=1}^{9}\frac{n(10^{2n+1}-1)}{9\cdot10^{n^2+2n}}
$$

解答形式

小数第 $61$ 位から第 $70$ 位まで ($10$ 桁の数) を、半角で1行目に入力せよ。
2行目以降に改行して回答すると、不正解となるので注意せよ。

3月前

9

問題文

$$
x+ \frac{1}{x} =-1
$$
のとき以下の値を求めよ
$$
\sum_{k=1}^{m^{3}-7m+9}(x^{k}+\frac{1}{x^{k}}) \quad
$$
ただしmは自然数である。

数列と4次方程式

noname 自動ジャッジ 難易度:
4月前

2

問題

一般項${a_n}=3(\frac{\sqrt{3}}{2})^{n-1}+\frac{(\sqrt{5}-1)^{n-1}}{2}+\frac{(\sqrt{5}+1)^{n-1}}{3}+(\sqrt{2}-1)^{n-1}$を与える数列${a_n}$の漸化式を考えることにより$x$についての方程式$$x^4+(1-\sqrt{2}-\frac{\sqrt{3}}{2}-2\sqrt{5})x^3+(4-\frac{\sqrt{3}}{2}-2\sqrt{5}+\frac{\sqrt{6}}{2}+2\sqrt{10}+\sqrt{15})x^2+(4-4\sqrt{2}-2\sqrt{3}+\sqrt{15}-\sqrt{30})x-2\sqrt{3}+2\sqrt{6}=0$$を解いてください。

解答形式

それぞれの解について、実数の場合はその整数部分、複素数の場合は実数部分の整数部分を求め、それらを全て足し合わせた数を半角で1行目に入力してください。

とある数列

amberGames-777 自動ジャッジ 難易度:
5月前

19

問題文

3,1,4,1,5,9,2,?
この数列で、?に入る数字は何?

解答形式

半角の数字1桁を入力してください。

昔作った漸化式

masorata 自動ジャッジ 難易度:
8月前

7

問題文

数列 $\{a_n \}$ $(n=1,2,...)$ が漸化式:

$$
a_1=2, \ \displaystyle a_{n+1}=\frac{5a_n+3\sqrt{a_n^2-4\ }}{4}\ \ \ (n=1,2,\ldots)
$$

を満たすとき、$\displaystyle a_7=\frac{\fbox{アイウエ}}{\fbox{オカ}}$ である。

解答形式

ア〜カには、0から9までの数字が入る。
文字列「アイウエオカ」をすべて半角で1行目に入力せよ。
ただし、それ以上約分できない形で答えよ。


${}$ 西暦2023年問題第3弾です。今回は数列から2023の位置を問うという、入試問題にありがちなテーマ設定にしてみました。問題文はあえて小難しく書いてますが、数列の規則性をとらえられれば十分です。軽く解いてやってください。

解答形式

${}$ 解答は、$a_{n}=2023$となる$n$の値をそのまま入力してください。なお、$a_{n}=2023$となる$n$が存在しない場合には「-1」と入力してください。
(例) $a_{103}=2023$ → $\color{blue}{103}$

三角関数の計算⑵

hkd585 自動ジャッジ 難易度:
22月前

3

問題文

次の計算をせよ.

$$
\sum_{k=1}^{2023}\sec\dfrac{6k-5}{6069}\pi\quad
$$

ただし,$\sec\theta=\dfrac{1}{\cos\theta}$とする.

解答形式

解答は整数となります.そのまま半角で入力してください.


問題文

$a_{1} = 3$ , $a_{n+1} = \frac{a_{n}(a_{n}+1)}{2}$

とする($n$は自然数)。

また、$2$ 以上の自然数を $p$ とし、$a_{n}$を $3^{p}$ で割った時の余りを $R_{n}^{p}$ とする。

このとき、数列 {$R_{n}^{p}$} は
「周期の長さが $2×3^{p-2}$ 」であり、
かつ「 $0$ 以上 $3^{p}$ 未満の $3$ の倍数のうち $9$ の倍数ではない数」

をすべて巡回することを示せ。

解答形式

論述形式です。途中までの投稿もOKです。$p$ の値が小さければ、試してみると成立していることが分かります。

2年前

1

問題文

数列{a_n}を,
a_1=log2 , a_(n+1)=(na_n+log(2n+1)+log2)/(n+1)
によって定める。
このとき, この数列の一般項 a_n および 極限値 lim(n→∞) (a_n-logn) をそれぞれ求めよ。

記述解答(大雑把で良い)でお願いします。

3年前

3

問題文

しずかちゃんがシャワーを浴びようとしてお湯を出し始めた。はじめのお湯の温度は $35$℃で、お湯を出し始めてから $n$ 秒後のお湯の温度は $T_n$℃であるとする。

しずかちゃんは非常に温度に敏感で、シャワーの温度をちょうど $40$℃に設定しないと落ち着かない。そこで、しずかちゃんはお湯を出し始めてから $n=1,2,3...$ 秒後に、シャワーの温度がちょうど $a(40-T_n)$℃だけ上がるように温度調節レバーを操作する。ここで、$a$ は正の定数である。なお、$T_n>40$ のときは $a(T_n-40)$℃だけ温度が「下がる」ように操作するものとする。

$N$ を自然数の定数として、温度調節レバーの操作がお湯の温度に反映されるまでちょうど $N$ 秒かかる。すなわち、しずかちゃんがお湯を出し始めてから $n$ 秒後に温度調節レバーを操作したとき、 はじめから $n+N$ 秒後と $n+N+1$ 秒後の間にシャワーの温度が $a(40-T_n)$℃だけ上昇する。

さて、$\displaystyle \lim_{n \to \infty} T_n=40$ であれば、しずかちゃんは十分な時間が経つと快適にシャワーを浴びることができる。$a$ が十分小さければ、すなわち温度をできるだけ少しづつ上げていけば、直感的にはこのことは可能である。では、具体的には $a$ はどれほど小さい必要があるのだろうか。そこで、$\displaystyle \lim_{n \to \infty} T_n=40$ が成り立たないような $a$ の最小値を $a_c$ とおく。以下の空欄を埋めよ。

(1) $N=1$ のとき、$a_c=\fbox{ア}$ である。

(2) $N=2$ のとき、$\displaystyle a_c=\frac{\fbox{イウ}+\sqrt{\fbox{エ}}}{\fbox{オ}}$ である。

解答形式

ア〜オには、0から9までの数字または「-」(マイナス)が入る。
(1)の答えとして「ア」にあてはまる数を半角で1行目に入力せよ。
(2)の答えとして、文字列「イウエオ」を半角で2行目に入力せよ。


問題文

以下の文がそれぞれ正しくなるように、空欄に $0$ から $9$ までの数字を埋めよ。ただし、同じ文字の空欄には同じ文字が入る。

(1)数列 $\fbox{ア}, \fbox{イ}, \fbox{ウ}, \fbox{エ},\fbox{オ}$ には、
$0$ が $\fbox{ア}$ 回、$1$ が $\fbox{イ}$ 回、$2$ が $\fbox{ウ}$ 回、$3$ が $\fbox{エ}$ 回、$4$ が $\fbox{オ}$ 回、それぞれ現れる。

(2)数列 $\fbox{カ}, \fbox{キ}, \fbox{ク}, \fbox{ケ}, \fbox{コ}, \fbox{サ}, \fbox{シ}, \fbox{ス}, \fbox{セ}, \fbox{ソ}$ には、
$0$ が $\fbox{カ}$ 回、$1$ が $\fbox{キ}$ 回、$2$ が $\fbox{ク}$ 回、$3$ が $\fbox{ケ}$ 回、$4$ が $\fbox{コ}$ 回、
$5$ が $\fbox{サ}$ 回、$6$ が $\fbox{シ}$ 回、$7$ が $\fbox{ス}$ 回、$8$ が $\fbox{セ}$ 回、$9$ が $\fbox{ソ}$ 回、それぞれ現れる。

解答形式

ア〜ソには、0から9までの数字が入る。
(1)の答えとして、文字列「アイウエオ」を半角で1行目に入力せよ。
(2)の答えとして、文字列「カキクケコサシスセソ」を半角で2行目に入力せよ。