利用規約更新のお知らせ (2024年2月7日1:16)
利用規約の更新を行いました。ページ下部の「利用規約」より、改訂後の利用規約をご確認ください。変更後もユーザーが異議なく利用継続した場合、変更後の利用規約に同意したものとみなします。

全問題一覧

カテゴリ
以上
以下

${}$ 西暦2024年問題第6弾です。いよいよ整数問題のお出ましとなりました。ある程度は手を動かす必要がありますが、あることに気づけば調べる候補をぐっと減らすことができます。約数の個数を求めるのが面倒な方はWolfram|Alpha https://www.wolframalpha.com なども併用して構いません。

解答形式

${}$ 解答は求める$n$の最小値をそのまま入力してください。
(例)$n=2106$ → $\color{blue}{2106}$

2024⑤

seven_sevens 自動ジャッジ 難易度:
3月前

5

問題文

$m^2+2024=n^2$となる自然数の組$(m,n)$をすべて求めよ。

解答形式

(m,n)
という形で解答してください。
答えが複数ある場合は改行区切りで入力してください。
また、mが小さい順に解答をしてください。

2024④

seven_sevens 自動ジャッジ 難易度:
3月前

10

問題文

$a^n+b^m=2024(a>b>0,n>1,m>1)$である自然数の組$(a,b,n,m)$をすべて求めよ。

解答形式

解答と解答を改行区切りで入力してください。


2023/11/8追記

(a,b,n,m)
という形で解答をしてください。
複数ある場合は前述の通り改行区切りで入力してください。
また、aが小さい順に、aが同じ場合はbが小さい順に解答してください。


2023/11/24追記

こちらのミスで自動判定の解答が指定した回答形式とあっていませんでした。すみませんでした。

2024③

seven_sevens 自動ジャッジ 難易度:
4月前

6

問題文

数列$a_n$を次のように定める。
$a_1=1$
$a_n=n^{a_{n-1}}$
このとき、以下の問いに答えなさい。
(1)$a_{2023}$の一の位はいくつか求めよ。
(2)$a_{2024}$の一の位はいくつか求めよ。
(3)$a_{2024}$の百の位はいくつか求めよ。

解答形式

(1) ~~~
(2) ~~~
の形でお願いします。問題番号と解答、一つの小問の解答と解答の間は半角スペースを開けてください。
解答は数字のみお書きください。

2024②

seven_sevens 自動ジャッジ 難易度:
4月前

9

問題文

$[\sqrt[11111]{2024!}]$を求めよ。ただし、$\log_{10}2=0.3010$、$\log_{10}3=0.4771$とする。

解答形式

数字のみを記入してください。

2024①

seven_sevens 自動ジャッジ 難易度:
4月前

11

問題文

(1)$2024!$は何回$2$で割り切ることができるか答えよ。
(2)$[\sqrt{2024}]$、$[\sqrt[3]{2024}]$の値を求めよ。ただし、$[x]$は$x$を超えない最大の整数を表すものとする。

チャレンジ課題

(3)$2024!$の約数の個数は$10^{91}$より大きいことを示せ。ただし、$1$から$2024$までの素数は$306$個である。

解答形式

(1) ~~~
(2) ~~~
の形でお願いします。問題番号と解答、一つの小問の解答と解答の間は半角スペースを開けてください。
解答は数字のみお書きください。


${}$ 西暦2023年問題第7弾、今年最後の西暦問題です。ラストを飾るのは循環小数です。循環小数というテーマ自体が奥深いわけですが、その一端を味わえるようにしました。どうぞ最後までお付き合いください。

お知らせ

${}$ いつもの図形問題ですが、明日1月8日(日)は出題をお休みして、翌週1月15日(日)から再開する予定です。お待たせしていますが、またどうぞよろしくお願いします。

解答形式

${}$ 解答は、$N$の値をそのまま入力してください。「$N=$」の記載は不要です。
(例) $N=107$ → $\color{blue}{107}$


${}$ 西暦2023年問題第6弾です。桁数を少し大きくした割り算と余りの問題をこさえてみました。面倒な計算をできるだけ避ける工夫を探してみてください。(完全には避けられないので、電卓や電卓機能サービスを用意しておいた方がいいかもしれません)

解答形式

${}$ 解答は、この8桁の自然数をそのまま入力してください。
(例) $\square\square\square\square$に入るのが$0106$で8桁の自然数が$20010623$となるとき
   → $\color{blue}{20010623}$


${}$ 西暦2023年問題第5弾です。今回は三角数を取り上げてみました。ド根性ではなく、スパッと求まる解法をぜひ探してみてください。

解答形式

${}$ 解答は、$n$の値をそのまま入力してください。「$n=$」の記載は不要です。
(例) $n=105$ → $\color{blue}{105}$


${}$ 西暦2023年問題第4弾です。今年の西暦問題も折り返しとなりました。桁数が大きいですが、手計算で処理できるよう仕込んであります。どうぞお楽しみください。

解答形式

${}$ 解答は、$N$の値をそのまま入力してください。「$N=$」の記載は不要です。
(例) $N=2323232323$ → $\color{blue}{2323232323}$

王道の整数問題

nemuri_neco 自動ジャッジ 難易度:
17月前

11

問題文

$\frac{7p+q}{7q+p}$が整数となるような異なる素数$(p,q)$の組み合わせを全て求めよ。

解答形式

$p$と$q$を横につなげて解答してください。解答が2つ以上ある場合は$p$の小さい順に改行して記入してください。$p$が等しい解答が2つ以上あった場合、$q$の小さい順に改行して記入してください。

解答例)$(p,q)=(2,11),(7,17),(7,29)$のとき、以下のように解答します。
211
717
729


問題文

2160nがある階乗と等しくなるような自然数nのうち、2番目に小さいもの、3番目に小さいものをそれぞれ求めよ。

解答形式

例えば、5,10のように、半角数字,半角数字と、左から2番目に小さいもの、3番目に小さいものと並べて記入してください。