tb_lb

tb_lb

Twitter ID: @tb_lb
補助線主体の初等幾何の問題を投稿しています。出題方針や難易度評価については https://bit.ly/3wS99iY にまとめました。
補助線主体の初等幾何の問題を投稿しています。出題方針や難易度評価については https://bit.ly/3wS99iY にまとめました。

統計情報

フォロー数0
フォロワー数5
投稿した問題数130
コンテスト開催数0
コンテスト参加数0
解答された数1102
いいねされた数22
解答した問題数0
正解した問題数0
正解率--

人気問題


${}$ 2023年、あけましておめでとうございます。本年もよろしくお願いいたします。
 さて、新年数日は図形問題をお休みして、西暦である2023を織り込んだ数学やパズルの問題をお送りします。
 初日・2日目は虫食算です。虫食算というと確定マスから埋めていき、時には場合分けや仮置きを利用するのが定番の手法ですが、僕が作る虫食算は数学的手法(約数や倍数、偶奇性や剰余、不等式による絞り込み、などなど)を適宜用いることで面倒な場合分けや仮置きを軽減できるようにしています。とはいえ、解き方は自由です。お好きなようにパズルなひと時をお楽しみください。

解答形式

${}$ 解答は2行目を「被除数÷除数」の形で入力してください。
(例) $2023 \div 101 = 20$ 余り $3$ → $\color{blue}{2023 \text{÷} 101}$
 入力を一意に定めるための処置です。数字は半角で、「÷」の演算記号はTeX記法(\div)ではなく全角記号の「÷」でお願いします。

2年前

32

【補助線主体の図形問題 #005】
 今回の図形問題は入試問題にもありそうな設定にしてみました。暗算でも処理しやすいように数値を調整してあります。腕に覚えのある方は頭の中だけで処理しきってみてください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
\def\mytri#1{\triangle \mathrm{#1}}
\def\jsim{\mathrel{\unicode[sans-serif]{x223D}}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒントの予告

  1. 大雑把な方針
  2. ヒント1をやや具体的に
  3. ヒント2の続き

${}$ 2022年、あけましておめでとうございます。本年もよろしくお願いいたします。
 さて、新年数日は図形問題をお休みして、西暦である2022を織り込んだ数学やパズルの問題をお送りします。
 初日・2日目は虫食算です。虫食算というと確定マスから埋めていき、時には場合分けや仮置きを利用するのが定番の手法ですが、僕が作る虫食算は数学的手法(約数や倍数、偶奇性や剰余、不等式による絞り込み、などなど)を適宜用いることで面倒な場合分けや仮置きを軽減できるようにしています。とはいえ、解き方は自由です。お好きなようにパズルなひと時をお楽しみください。

解答形式

${}$ 解答は上2行を「被乗数×乗数」の形で入力してください。
(例) $2021 \times 2022 = 4086462$ → $\color{blue}{2021 \text{×} 2022}$
 入力を一意に定めるための処置です。数字は半角で、「×」の演算記号はTeX記法(\times)ではなく全角記号の「×」でお願いします。


【補助線主体の図形問題 #028】
 今回は素朴な面積関係の問題を用意しました。素朴なだけに多様な手法が通用します。力技解法もあれば、補助線による暗算解法も仕込んであります。思い思いの手法で挑戦してみてください!

※2021年9月11日より難易度評価を見直して、総じて★+1しました。この問題の現難易度評価★2.5は、旧評価の★1.5にあたります。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。


西暦2023年問題第2弾です。第1弾に引き続き虫食算で、今回は掛け算にしてみました。数学的手法(約数や倍数、偶奇性や剰余、不等式による絞り込み、などなど)を適宜用いることで面倒な場合分けや仮置きを軽減できるよう仕込んでいるのは変わりません。パズル的に解くのもよし、数学的にゴリゴリ解くのもよし、どうぞお好きなようにお楽しみください!

解答形式

${}$ 解答は上2行を「被乗数×乗数」の形で入力してください。
(例) $102 \times 2023 = 206346$ → $\color{blue}{102 \text{×} 2023}$
 入力を一意に定めるための処置です。数字は半角で、「×」の演算記号はTeX記法(\times)ではなく全角記号の「×」でお願いします。

2年前

18

【補助線主体の図形問題 #011】
 今日は傍心を登場させてみました。傍心への慣れ具合により難易度の体感が大きく変わるかもしれません。暗算でも解けるように調整してあります。存分に傍心の性質をお楽しみください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
\def\mytri#1{\triangle \mathrm{#1}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. 全体の方針をぼんやりと
  2. ヒント1の内容をやや具体的に
  3. ヒント2の内容をやや具体的に
  4. ヒント3の続き

新着問題

9日前

3

【補助線主体の図形問題 #116】
 今週の図形問題です。今回は求角問題を用意しました。一瞬ギョッとするかもしれませんが、おなじみの形が埋め込まれています。腕に覚えのある方は暗算でどうぞ!

解答形式

${
\renewcommand\deg{{}^{\circ}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。
(例) $12\deg$ → $\color{blue}{12.00}$  $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$
 入力を一意に定めるための処置です。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

交わる円と三角形

tb_lb 自動ジャッジ 難易度:
16日前

10

【補助線主体の図形問題 #115】
 今週の図形問題です。今回は重めの問題にしてみました。とはいえ、補助線が活躍するのはいつも通りです。じっくり腰を据えて挑戦してください!

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

長方形と2つの内接円

tb_lb 自動ジャッジ 難易度:
23日前

3

【補助線主体の図形問題 #114】
 今週の図形問題です。うまいこと補助線を引けば暗算で処理できるようになっています。初等幾何の皆さんは頭の中だけで処理し切る暗算解法に挑戦してみてください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

正方形と内接円

tb_lb 自動ジャッジ 難易度:
30日前

2

【補助線主体の図形問題 #113】
 今週の図形問題は軽めの求積問題にしてみました。勘で答えたくなるかもしれませんが、一旦その欲求は抑えて、ぜひ論証し切ってみてください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

37日前

3

【補助線主体の図形問題 #112】
 今週の図形問題です。今回は正方形をたっぷり用意してみました。うまいこと補助線を引いて、僕の意図を浮かび上がらせてみてください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

44日前

4

【補助線主体の図形問題 #111】
 今週の図形問題です。図形問題通算111問目とレピュニット(1のゾロ目)になったので、それにかこつけて正十一角形の問題をお送りします。今回は2ヶ所の角度の和を求める問題にしてみました。補助線を頼りに解き明かしてください。

解答形式

${\renewcommand\deg{{}^{\circ}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。
(例) $12\deg$ → $\color{blue}{12.00}$  $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$
 入力を一意に定めるための処置です。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

参考問題

${}$ 正十一角形を素材とした問題は過去にも出題しています。ぜひ併せてお楽しみください。
(1)→ https://pororocca.com/problem/919/
(2)→ https://pororocca.com/problem/933/

開催したコンテスト

まだ開催したコンテストがありません

参加したコンテスト

まだ参加したコンテストがありません