ポロロッカは自作問題共有サービスです。
作った問題を投稿したり、投稿された問題を解いたりすることができます。
ポロロッカ(Wikipedia )はアマゾン川で海水が逆流する現象です。
さぁ、ポロロッカのようにあなたの作った怒涛の問題の波をここに起こしてみませんか?
チュートリアルはこちら♪
このサービスはUTokyo Project Sprintの1プロダクトとして開発されました。
コンテスト名 | 日程 | 作成者 |
---|---|---|
開催中 数学思考力テスト 第1回 | 2023-03-26 19:00 〜 2023-04-01 20:00 |
![]() |
4×4の16マスがある。このマス目を赤、青、黄、緑で塗ることを考える。
A:縦と横のどの辺をとっても赤、青、黄、緑が一回ずつ出現する。
B:以下のように4つの部屋に分割したときにどの部屋をとっても赤、青、黄、緑が1回ずつ出現する。
□□|□□
□□|□□
__|__
□□|□□
□□|□□
AとBを両方満たす塗り方は何通りありますか?
(例:30通りだったら、30と答えなさい)
A以上B以下の整数に出現する1の個数を、A●Bと表すとする。
例えば6、7、8、9、10、11には、3つの1が出現しているため、6●11=3 となる。
(15●30)●(220●X)=12 のとき、考えられる整数Xとして最も大きいものを答えなさい。
ある座標平面がある。
(6、2)(6、0)(8、0)(8、18)(0、18)(0、2)(0、0)をそれぞれ
点A B C D E F G とする。この時、四角形ABGFと六角形DCBAFEの面積をそれぞれ2等分する直線Lを引くことを考える。
直線Lのy切片の絶対値を求めよ。
高さが100cmで底面積が600cm²の直方体の形をした水槽がある。この水槽は通常の水槽とは異なり、水槽の底面を上下移動させることができる。(底面が移動するとそれに伴って水も移動するため、水面も移動する。)
まず、底面を1番下にした状態で毎分500cm³で40分間、水を入れた。
次に底面を上にXcm移動させた。
そして底面が上に移動した状態で毎分600cm³で60分間、水を入れた。
そして底面を上にXcm移動させると、4000 cm³ だけ水が溢れ出た。
この時、Xの値を求めなさい。ただし分数になる場合は以下のように答えなさい。
(例 1/2の場合は12 54/73の場合は5473 22/23の場合は2223 と答える )
4×4の16マスがある。このマス目を赤、青、黄、緑で塗ることを考える。
A:縦と横のどの辺をとっても赤、青、黄、緑が一回ずつ出現する。
B:以下のように4つの部屋に分割したときにどの部屋をとっても赤、青、黄、緑が1回ずつ出現する。
□□|□□
□□|□□
__|__
□□|□□
□□|□□
AとBを両方満たす塗り方は何通りありますか?
(例:30通りだったら、30と答えなさい)
A以上B以下の整数に出現する1の個数を、A●Bと表すとする。
例えば6、7、8、9、10、11には、3つの1が出現しているため、6●11=3 となる。
(15●30)●(220●X)=12 のとき、考えられる整数Xとして最も大きいものを答えなさい。
ある座標平面がある。
(6、2)(6、0)(8、0)(8、18)(0、18)(0、2)(0、0)をそれぞれ
点A B C D E F G とする。この時、四角形ABGFと六角形DCBAFEの面積をそれぞれ2等分する直線Lを引くことを考える。
直線Lのy切片の絶対値を求めよ。
高さが100cmで底面積が600cm²の直方体の形をした水槽がある。この水槽は通常の水槽とは異なり、水槽の底面を上下移動させることができる。(底面が移動するとそれに伴って水も移動するため、水面も移動する。)
まず、底面を1番下にした状態で毎分500cm³で40分間、水を入れた。
次に底面を上にXcm移動させた。
そして底面が上に移動した状態で毎分600cm³で60分間、水を入れた。
そして底面を上にXcm移動させると、4000 cm³ だけ水が溢れ出た。
この時、Xの値を求めなさい。ただし分数になる場合は以下のように答えなさい。
(例 1/2の場合は12 54/73の場合は5473 22/23の場合は2223 と答える )
A以上B以下の整数に出現する1の個数を、A●Bと表すとする。
例えば6、7、8、9、10、11には、3つの1が出現しているため、6●11=3 となる。
(15●30)●(220●X)=12 のとき、考えられる整数Xとして最も大きいものを答えなさい。
ある座標平面がある。
(6、2)(6、0)(8、0)(8、18)(0、18)(0、2)(0、0)をそれぞれ
点A B C D E F G とする。この時、四角形ABGFと六角形DCBAFEの面積をそれぞれ2等分する直線Lを引くことを考える。
直線Lのy切片の絶対値を求めよ。
高さが100cmで底面積が600cm²の直方体の形をした水槽がある。この水槽は通常の水槽とは異なり、水槽の底面を上下移動させることができる。(底面が移動するとそれに伴って水も移動するため、水面も移動する。)
まず、底面を1番下にした状態で毎分500cm³で40分間、水を入れた。
次に底面を上にXcm移動させた。
そして底面が上に移動した状態で毎分600cm³で60分間、水を入れた。
そして底面を上にXcm移動させると、4000 cm³ だけ水が溢れ出た。
この時、Xの値を求めなさい。ただし分数になる場合は以下のように答えなさい。
(例 1/2の場合は12 54/73の場合は5473 22/23の場合は2223 と答える )
【補助線主体の図形問題 #026】
今回は、たびたび取り上げている傍心に二等辺三角形を組み合わせてみました。暗算解法が仕込まれているのはいつも通り変わりません。補助線を武器に傍心の性質をあぶり出しながらお楽しみください。
${}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\ \mathrm{cm}$ → $\color{blue}{12.00}$ $10\sqrt{2}\ \mathrm{cm}$ → $\color{blue}{14.14}$
入力を一意に定めるための処置です。$\pi=3.14$とは限りませんのでご注意ください。関数電卓やグーグルの電卓機能、Wolfram|Alphaなどのご利用をお勧めします。
4×4の16マスがある。このマス目を赤、青、黄、緑で塗ることを考える。
A:縦と横のどの辺をとっても赤、青、黄、緑が一回ずつ出現する。
B:以下のように4つの部屋に分割したときにどの部屋をとっても赤、青、黄、緑が1回ずつ出現する。
□□|□□
□□|□□
__|__
□□|□□
□□|□□
AとBを両方満たす塗り方は何通りありますか?
(例:30通りだったら、30と答えなさい)
【補助線主体の図形問題 #090】
間もなく迎える3月14日は円周率$\pi$の近似値$3.14$から「円周率の日」、転じて「数学の日」に指定されています。そんな「円周率の日」「数学の日」に先んじて円だらけの問題を用意しました。手慣れた方なら暗算で行けるかもしれません。今一時、円だらけの図形と戯れてみてください。
${}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\ \mathrm{cm}$ → $\color{blue}{12.00}$ $10\sqrt{2}\ \mathrm{cm}$ → $\color{blue}{14.14}$
入力を一意に定めるための処置です。$\pi=3.14$とは限りませんのでご注意ください。関数電卓やグーグルの電卓機能、Wolfram|Alphaなどのご利用をお勧めします。
A以上B以下の整数に出現する1の個数を、A●Bと表すとする。
例えば6、7、8、9、10、11には、3つの1が出現しているため、6●11=3 となる。
(15●30)●(220●X)=12 のとき、考えられる整数Xとして最も大きいものを答えなさい。
ある座標平面がある。
(6、2)(6、0)(8、0)(8、18)(0、18)(0、2)(0、0)をそれぞれ
点A B C D E F G とする。この時、四角形ABGFと六角形DCBAFEの面積をそれぞれ2等分する直線Lを引くことを考える。
直線Lのy切片の絶対値を求めよ。
高さが100cmで底面積が600cm²の直方体の形をした水槽がある。この水槽は通常の水槽とは異なり、水槽の底面を上下移動させることができる。(底面が移動するとそれに伴って水も移動するため、水面も移動する。)
まず、底面を1番下にした状態で毎分500cm³で40分間、水を入れた。
次に底面を上にXcm移動させた。
そして底面が上に移動した状態で毎分600cm³で60分間、水を入れた。
そして底面を上にXcm移動させると、4000 cm³ だけ水が溢れ出た。
この時、Xの値を求めなさい。ただし分数になる場合は以下のように答えなさい。
(例 1/2の場合は12 54/73の場合は5473 22/23の場合は2223 と答える )
【補助線主体の図形問題 #026】
今回は、たびたび取り上げている傍心に二等辺三角形を組み合わせてみました。暗算解法が仕込まれているのはいつも通り変わりません。補助線を武器に傍心の性質をあぶり出しながらお楽しみください。
${}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\ \mathrm{cm}$ → $\color{blue}{12.00}$ $10\sqrt{2}\ \mathrm{cm}$ → $\color{blue}{14.14}$
入力を一意に定めるための処置です。$\pi=3.14$とは限りませんのでご注意ください。関数電卓やグーグルの電卓機能、Wolfram|Alphaなどのご利用をお勧めします。
4×4の16マスがある。このマス目を赤、青、黄、緑で塗ることを考える。
A:縦と横のどの辺をとっても赤、青、黄、緑が一回ずつ出現する。
B:以下のように4つの部屋に分割したときにどの部屋をとっても赤、青、黄、緑が1回ずつ出現する。
□□|□□
□□|□□
__|__
□□|□□
□□|□□
AとBを両方満たす塗り方は何通りありますか?
(例:30通りだったら、30と答えなさい)
【補助線主体の図形問題 #090】
間もなく迎える3月14日は円周率$\pi$の近似値$3.14$から「円周率の日」、転じて「数学の日」に指定されています。そんな「円周率の日」「数学の日」に先んじて円だらけの問題を用意しました。手慣れた方なら暗算で行けるかもしれません。今一時、円だらけの図形と戯れてみてください。
${}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\ \mathrm{cm}$ → $\color{blue}{12.00}$ $10\sqrt{2}\ \mathrm{cm}$ → $\color{blue}{14.14}$
入力を一意に定めるための処置です。$\pi=3.14$とは限りませんのでご注意ください。関数電卓やグーグルの電卓機能、Wolfram|Alphaなどのご利用をお勧めします。