全問題一覧

カテゴリ
以上
以下

連理湯方程式の利用2

kokoyu 自動ジャッジ 難易度:
9時間前

0

問題文

34人の生徒を3人の班と4人の班に分けたところ、4人の班は3人の班より5つ多くできた。3人の班の数と、4人の班の数をそれぞれ求めなさい

解答形式

半角で、3人の班=Xで答えるものとする

マラソン

kokoyu 自動ジャッジ 難易度:
10時間前

0

問題

A君、B君、C君、D君が先頭を走っています。A君は2位、B君は1位、C君は4位、D君は3位の順番です。途中で、A君がB君を抜き1位になりました。しかし、その後D君がA君を抜きました。A君は今何位でしょう。(数字は半角とします)

連立方程式の利用

kokoyu 自動ジャッジ 難易度:
10時間前

0

問題

1個120円のおにぎりと1個90円のパンを合わせて10個勝ったら、代金が1080円になった。おにぎりとパンそれぞれを何個買ったか求めなさい
また、過程文・途中式も書きなさい。(回答する際、数字は半角とする)

初投稿

Lamenta 自動ジャッジ 難易度:
12時間前

2

問題文

1つの整数が書かれた15枚のタイルが横1列に敷き詰められています。以下の条件を満たす数字の書き方は何通りあるか答えてください。

・タイルには36の正の約数のうちいずれかが書かれている。
・任意の隣り合う2枚のタイルに書かれた数の積は平方数でない。
・任意の隣り合う3枚のタイルに書かれた数の積は平方数である。

解答形式

半角数字で答えてください。

正方形と円の接線

kusu394 自動ジャッジ 難易度:
1日前

0

問題文

正方形 $ABCD$ の辺 $BC$ 上に点 $E$ をとると,
$$BE=7,\ \ \ \ CE=5$$が成り立ちます.$E$ を中心とした半径 $7$ の円を $O$ とし,正方形 $ABCD$ の内部かつ円 $O$ の周上の点 $F$ をとると直線 $DF$ は円 $O$ の接線となりました.このとき,線分 $CE$ の長さは正整数 $a,b$ と素数 $c$ を用いて $\displaystyle{\frac{a+\sqrt{b}}{c}}$ と書けるので $a+b+c$ の値を解答してください.

解答形式

例)ひらがなで入力してください。

角度

iwasaki 自動ジャッジ 難易度:
1日前

0

問題文

凸四角形ABCDが∠ABD=12°、∠DBC=84°、∠ADB=18°、BD=BCを満たすとき、角ACDは何度ですか。

解答形式

半角数字で解答してください。

勇者の行く手を阻むもの

kusu394 自動ジャッジ 難易度:
2日前

0

問題文

勇者は座標平面上の原点 $(0,0)$ にいます. 勇者は点 $(6,6)$ まで $x$ 座標か $y$ 座標の少なくとも一方が整数である点のみを通って最短距離となるように移動します.

しかしながら,魔王の罠が直線 $\displaystyle{y=x+\frac{5}{2}}$ 上に張られていて,勇者は罠の張られている直線上を通るたびに $1$ ダメージずつ受けてしまいます.

勇者が最短距離で移動する道のりは ${}_{12}\mathrm{C}_6$ 通り考えられますが,それらすべてについて受けるダメージの平均値を求めてください.ただし,その平均値は互いに素な正整数 $a,b$ を用いて $\displaystyle{\frac{a}{b}}$ と書けるので $a+b$ の値を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

突き刺す直線

kusu394 自動ジャッジ 難易度:
4日前

2

問題文

座標平面において $A(0,4000),B(-3000,0),C(3000,0)$ をとります.次の条件をすべて満たすような直線 $\ell$ として考えられるものは何通りありますか.

  • $\ell$ と直線 $AB$ は点 $P$ で交わり, $P$ の $x$ 座標は $-3000$ より大きく $0$ より小さい.
  • $\ell$ と直線 $AC$ は点 $Q$ で交わり, $Q$ の $x$ 座標は $3000$ より大きい.
  • 線分 $BP$ の長さと線分 $CQ$ の長さは整数値である.
  • $\ell$ と $x$ 軸の交点を $R$ とするとき,$\triangle RPB$ と $\triangle RQC$ の面積は等しい.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

内積のとりうる値

nanohana 採点者ジャッジ 難易度:
4日前

0

問題文

空間上にAB=1を満たす2点A,Bと、同じ空間上を自由に動ける点Cを考える。
(→AC)・(→BC)の取りうる値の範囲を求めよ。

解答方式

値の範囲を答えてください。解答の過程は必要ありません。

角度の問題

iwasaki 自動ジャッジ 難易度:
5日前

1

三角形ABCとDEFにおいて
AB=DF,BC=DE,∠B=63°,∠C=30°,∠D=171°
であるとき,∠Eの角度を求めてください。

解答形式

非負整数を半角で入力してください。

不等式

sdzzz 自動ジャッジ 難易度:
5日前

2

問題文

正の実数 $x,y,z$ が,
$$
(6x+15y+8z)xyz=5
$$
を満たす時, $(5x+5y+4z)^2$ の最小値を求めてください.

解答形式

半角数字で入力してください

対称式の総和②

nanohana 自動ジャッジ 難易度:
6日前

4

問題文

$$
x+ \frac{1}{x} =1
$$
のとき以下の値を求めよ
$$
\sum_{k=1}^{10^m}(x^{k}+\frac{1}{x^{k}}) \quad
$$
ただしmは自然数である。

回答形式

半角数字で答えてください。
また、複数個の値を取りうる場合は値の小さい順に改行して入力してください。