数列$\ a_{n}$は以下のように定義されます.
$$a_{1}=1,a_{n+1}=2a_{n}+2\cos\frac{n\pi}{3}$$
このとき,$$\displaystyle\sum_{k=1}^{50000}a_{k}$$の正の約数の個数を解答してください.
整数で解答してください.
$$
M_{x}(y)をyをxで割った余りとします。
\\a_{n+1}=M_{p}(3a_{n} +\beta),a_{1}=aであり、
\\
\begin{equation}
\left\{
\begin{alignedat}{3}
n,a,\beta,p\in\mathbb{N}
\\n\geq1
\\1\leq \beta \leq p
\end{alignedat}
\right.
\end{equation}
である数列を考えたとき、\\
\\
a_{n}の取り得る値の種類をT_{p}として、T_{p}\ne pを示してください。
$$
日本語で簡潔に入力してください。
定数$\,c\,$は$\,0<c\sqrt{c-1}<4\,$を満たす定数とする。
複素数列$\,\lbrace z_n \rbrace\,$は次の漸化式を満たし、初項$\,z_1\,$の実部は正である。
$$
z_{n+1}=\displaystyle \frac{1}{c}\left(z_n+\frac{1}{z_n}\right)\,\,\,\,\,(n=1,2,3,...)
$$
このとき$\,\displaystyle \lim_{ n \to \infty}|z_n-\alpha|=0\,$を満たすような複素数$\,\alpha\,$を求めよ。
記述式(答えのみも歓迎)