全問題一覧

カテゴリ
以上
以下

漸化式と極限

nanohana 自動ジャッジ 難易度:
2月前

3

問題文

$$S_{n}=(n-2)a_{n+1}$$$$a_{1}=1$$$$\lim_{n\to \infty}S_{n}が有限の値に収束する。$$$$このとき、a_{3}の値を求めよ。$$$$ただし、S_n=a_1+a_2+・・・+a_nである。$$

解答形式

$$a_{3}の値を半角数字で入力してください。$$

2025年

SU-JACK 自動ジャッジ 難易度:
4月前

5

問題文

$$
a_1=b_1=2025,
\begin{cases} a_{n+1}=a_n-2n+b_{2028}\\ b_{n+1}=b_n+4n+a_{2028}\end{cases}
$$

について、$a_n$の一般項を
$$a_n=α−(n−1)(n−β)$$と表したとき、$β$の値を求めよ


問題文

定数$\,c\,$は$\,0<c\sqrt{c-1}<4\,$を満たす定数とする。
複素数列$\,\lbrace z_n \rbrace\,$は次の漸化式を満たし、初項$\,z_1\,$の実部は正である。
$$
z_{n+1}=\displaystyle \frac{1}{c}\left(z_n+\frac{1}{z_n}\right)\,\,\,\,\,(n=1,2,3,...)
$$
このとき$\,\displaystyle \lim_{ n \to \infty}|z_n-\alpha|=0\,$を満たすような複素数$\,\alpha\,$を求めよ。

解答形式

記述式(答えのみも歓迎)