二等辺三角形と等長の3線分

tb_lb 自動ジャッジ 難易度: 数学 > 中学数学
2021年3月7日22:54 正解数: 10 / 解答数: 31 (正答率: 32.3%) ギブアップ不可
初等幾何 長さ

全 31 件

回答日時 問題 解答者 結果
2023年2月23日21:51 二等辺三角形と等長の3線分 Ghaaj
正解
2023年2月14日0:22 二等辺三角形と等長の3線分 a_math
正解
2023年2月11日8:08 二等辺三角形と等長の3線分 ゲスト
不正解
2023年2月11日8:06 二等辺三角形と等長の3線分 ゲスト
不正解
2023年2月11日0:12 二等辺三角形と等長の3線分 ゲスト
不正解
2023年2月11日0:07 二等辺三角形と等長の3線分 ゲスト
不正解
2023年2月10日23:40 二等辺三角形と等長の3線分 ゲスト
不正解
2023年1月1日9:40 二等辺三角形と等長の3線分 Y
正解
2022年10月12日21:51 二等辺三角形と等長の3線分 ゲスト
正解
2022年10月3日19:05 二等辺三角形と等長の3線分 hkd585
正解
2021年8月23日1:08 二等辺三角形と等長の3線分 ゲスト
正解
2021年8月4日9:04 二等辺三角形と等長の3線分 moxn_nxom
不正解
2021年7月28日10:10 二等辺三角形と等長の3線分 ゲスト
不正解
2021年3月11日22:15 二等辺三角形と等長の3線分 mochimochi
正解
2021年3月11日8:47 二等辺三角形と等長の3線分 takedake_0610
不正解
2021年3月10日22:23 二等辺三角形と等長の3線分 ゲスト
正解
2021年3月10日22:14 二等辺三角形と等長の3線分 ゲスト
不正解
2021年3月9日22:11 二等辺三角形と等長の3線分 ゲスト
不正解
2021年3月9日14:56 二等辺三角形と等長の3線分 tima_C
正解
2021年3月9日0:08 二等辺三角形と等長の3線分 ゲスト
不正解
2021年3月9日0:07 二等辺三角形と等長の3線分 ゲスト
不正解
2021年3月8日23:41 二等辺三角形と等長の3線分 ゲスト
不正解
2021年3月8日23:40 二等辺三角形と等長の3線分 ゲスト
不正解
2021年3月8日14:42 二等辺三角形と等長の3線分 naoperc
正解
2021年3月8日12:58 二等辺三角形と等長の3線分 ゲスト
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

20月前

24

【補助線主体の図形問題 #028】
 今回は素朴な面積関係の問題を用意しました。素朴なだけに多様な手法が通用します。力技解法もあれば、補助線による暗算解法も仕込んであります。思い思いの手法で挑戦してみてください!

※2021年9月11日より難易度評価を見直して、総じて★+1しました。この問題の現難易度評価★2.5は、旧評価の★1.5にあたります。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

求面積問題27

Kinmokusei 自動ジャッジ 難易度:
19月前

8

問題文

正方形と正三角形を組み合わせた以下の図形について、赤線の長さが6であるとき、図形全体の面積を求めてください。

解答形式

半角数字で解答してください。


問題文

$f(x)=x^2-4x+6$とする。$f(f(f(f(f(p+2)))))$が素数となるような素数$p$を全て求めよ。

解答形式

ない場合は「0」、ある場合は小さい順に半角英数字で入力してください。

円と3本の弦

tb_lb 自動ジャッジ 難易度:
23月前

10

【補助線主体の図形問題 #019】
 1週空いての久しぶりの出題となりました。今回はガリガリ長さを求める解法から暗算解法まで解法の種類多めとなっています。腕に覚えのある方は暗算解法だけでなく、解法の数にも挑戦してもらえたら嬉しいです!

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

9月前

7

【補助線主体の図形問題 #070】
 今週は、僕の出題では珍しく軌跡の問題です。初等幾何によらない解法も存在しますが、いつも通り補助線でも突破可能です。難易度評価は補助線による解法を想定しており、それ以外の解法が思いついた方にはぐっと簡単に見えるかもしれません。お好みの解法でお楽しみください!

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

二等辺三角形と求角

tb_lb 自動ジャッジ 難易度:
11月前

8

【補助線主体の図形問題 #063】
 今週はシンプルな難角問題を用意してみました。4頂点に対しすでに6線分が引かれていますから、補助点を打たなくてはなりません。要となる補助点を試行錯誤で探す楽しみを味わってもらえたら幸いです。

解答形式

${\renewcommand\deg{{}^{\circ}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。
(例) $12\deg$ → $\color{blue}{12.00}$  $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$
 入力を一意に定めるための処置です。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。


${}$ 西暦2022年問題第3弾です。今回は数表から西暦である数を探すという入試問題にありがちな設定の問題にしてみました。いろいろな方法が通用するように調整しています。お好みの方法でどうぞお楽しみください。

解答形式

${}$ 解答は2022が登場した回数をそのまま単位なしで入力してください。
(例) 103回 → $\color{blue}{103}$

求長問題24

Kinmokusei 自動ジャッジ 難易度:
22月前

7

問題文

半円と、その中心を通る円が図のように配置されています。赤、青で示した弧の長さがそれぞれ3, 4のとき、緑で示した弧の長さを求めてください。

解答形式

半角数字で解答してください。

2年前

15

【補助線主体の図形問題 #002】
 先日より補助線主体の初等幾何の問題を投稿しています。
 今日は補助線問題の花形である求角問題を用意しました。とはいえ、補助線問題としてまだまだ大人しめです。手慣れている方は頭の中だけでの処理に挑戦してみてください。

解答形式

${\renewcommand\deg{{}^{\circ}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。
(例) $12\deg$ → $\color{blue}{12.00}$  $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$
 入力を一意に定めるための処置です。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. 大雑把な方針
  2. ヒント1の内容をやや具体的に
  3. ヒント2の続き

無理関数の最大値

zyogamaya 自動ジャッジ 難易度:
2年前

7

問題文

関数
$f(x)=\sqrt[3]{-(x+4)(2x+3)(3x-8)}\ \left(\displaystyle -\frac{3}{2} \leq x \leq \frac{8}{3}\right)$
の最大値を求めよ。

解答形式

半角数字またはTeXを入力してください。

14月前

3

問題文

図の条件の下で、青で示した線分の長さ $x$ を求めてください。
なお、緑で示した2つの角の大きさは等しく、ピンクで示した点は三角形の重心です。

解答形式

半角数字で解答してください。

2年前

5

【補助線主体の図形問題 #010】
 今年2021年の1月末から投稿を初めて10問目となりました。キリ番記念(?)に少しばかり手ごたえのある問題をお送りすることにします。うまい補助線を引けるだけでは不十分で、補助線を活かすための発想も必要です。じっくり腰を据えて補助線を戯れてみてください!

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
\renewcommand\deg{{}^{\circ}}
\def\jpara{\mathrel{\unicode{x2AFD}}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. まずすべきことと全体の方針
  2. ヒント1の続き
  3. ヒント2をやや具体的に
  4. ヒント2・3の続き