数学の問題一覧

カテゴリ
以上
以下

問題文

初めのブロックの体積をxとし、それを二等分する作業一回をnとする。
例:1→2→4→8 のように二等分する。この時、n =3であり、最後のブロックの数は8である。また全体を通して7回二等分している。この時、次の問いに答えよ。

(1)最後のブロックの数が4194304の時、nの値を求めよ
(2)n =12であり、最後のブロック1つの体積が10であるとき、xの値を求めよ
(3)全体を通して二等分した回数をnを用いて表せ
(4)今まで二等分されたブロックの数の和をnを用いて表せ
例:n=1の時、ブロックの和は3、n=2の時、ブロックの和は7、n=3の時、ブロックの和は15

解答方法

(1)◯◯
(2)◯◯
(3)◯◯
のように行を変えて答えなさい。
n=、x=などは必要ありません。 累乗の指数の項が複数ある場合は()をつけなさい
例:3^(x+3)、4^3
マイナスはハイフンで答えなさい。→-

反射2

piroshiki 自動ジャッジ 難易度:
22日前

0

問題文

一辺が$1$の正方形$ABCD$の頂点$A$から、動点$P$を$0 \leqq \angle\mathrm{DAE} \leqq π/2$となる辺$BC,CD$上の点$E$へ向かって直進させることを考える。いずれかの辺に触れたときは入射角と反射角が等しくなるように反射させ、頂点に触れたときは入射角を$π/2$として考える。
このとき点$P$が$2$進んだ後の点の軌跡で囲まれた領域の面積$S$を求めよ。

解答形式

$S$は$a/b$の形で表されるため、$b$を有理化した既約分数で回答すること。
$a=2√2-1,b=√2$の場合は、「$4-√2/2$」と回答する。

素因数分解

sembri 自動ジャッジ 難易度:
25日前

17

63999271を素因数分解した時に出てくる素因数全ての和を求めなさい。

例:35の時
 5+7=12と解答。


自然数 n に対して、次の等式が成り立つことを示しなさい。

1+2+3+⋯+𝑛=𝑛²−(1+2+3+⋯+(𝑛−1))

中学数学応用

rei 自動ジャッジ 難易度:
2月前

0

問題文

a+b+c+d= 0 , ad = bc , (b^2+c^2+d^2)/a -a = 4 であるとき、dをaを使って表せ。(ただし、b,cは使ってはならない。また、d>0である。)

解答形式

d=○○と書くこと。ただし、ルートを使う場合は√○○と書きなさい。また、n乗の場合は○○^nと書くこと。(コピー推奨)

3月前

17

次の問題のxとyを求めてください。

3x➕2y🟰x➖y🟰2x➖3y➖7

x=○○、y=○○
の形で回答してください。
xとyは小文字です。
マイナスが付く場合はひらがなの延ばし棒を記入してください。

WMC(C)

Weskdohn 採点者ジャッジ 難易度:
4月前

15

問題文

SKG学院の学園祭では,下のような$5$マス$\times5$マスの盤を用いて,次のようなゲームを行う.

・お客さんは,12個の碁石を全てマスの上に置く.
・一マスには一つまでしか碁石は置けない.
・この時スコアを次のように定める.
スコア:各行,各列について,碁石が偶数個置かれているものの個数.

スコアが10となるような,碁石の置き方の一例を答えよ.

解答形式

置かないマスは0,置くマスは1で表す.
例えば,一番右上,一番左上にのみ碁石を置く.この置き方は下のように書くものとする.

10001
00000
00000
00000
00000

またこの時,スコアは8である.

8角形の面積

AS 自動ジャッジ 難易度:
5月前

7

面積 $1$ の平行四辺形 $\mathrm{ABCD}$ に対し,辺 $\mathrm{AB},\mathrm{BC},\mathrm{CD},\mathrm{DA}$ の中点をそれぞれ $\mathrm K,\mathrm L,\mathrm M,\mathrm N$ とする.$8$ 直線 $\mathrm{AL},\mathrm{AM},\mathrm{BM},\mathrm{BN},\mathrm{CN},\mathrm{CK},\mathrm{DK},\mathrm{DL}$ によって囲まれてできる $8$ 角形の面積を求めよ.

ただし,整数でない有理数は既約分数(分母は自然数,分子は整数で,互いに素)で表し,$\displaystyle\frac{5}{13}$ なら
5/13
のように記入して答えよ.

クラスの人数

AS 自動ジャッジ 難易度:
5月前

5

AクラスとBクラスの生徒の合計は24人である.鉛筆とボールペンについて在庫が何本かあり,それらを生徒に配りたい.Aクラスの生徒に鉛筆を7本ずつ配ろうとすると最後の1人で足りなくなり,Bクラスの生徒にボールペンを6本ずつ配ろうとすると最後の1人で足りなくなる.そこで,逆にAクラスの生徒にボールペンを,Bクラスの生徒に鉛筆を配ると,クラス毎に同じ本数だけ,在庫をちょうど配りきることができた.(1人あたりに配った本数は,AクラスとBクラスでは同じとは限らない.)
Aクラスの生徒の人数としてありえる数を全て求めよ.

答えは,小さい順に空白を入れずカンマで区切って記入せよ.例えば,1と2と3があり得るなら
1,2,3
と答えよ.

5月前

2

問題文

$AB=7$,$AB>AC$を満たす$\triangle ABC$について、線分$AB$上に$AC=BD$となるように点$D$をとる。直線$BC$を対称の軸として点$D$を対称移動した点を点Eとし、線分$BE,DE$を結ぶ。ここで、線分$DE$と線分$BC$は交点を持った。この点を点$M$とする。さらに、$\angle BAC$の二等分線と線分$BC$の交点を点$F$としたとき、$\angle AFB=135°$であった。$CM+DM=3$のとき、凹五角形$ABEMC$の面積を求めよ。

解答形式

単位を付けずに半角数字で解答してください。


1 次の式を計算せよ。

(1) −5−(−3)


${}$ 西暦2025年問題第7弾です。1月7日にお送りするはずでしたが、問題に不備が見つかり、9日の出題となってしまいました。
 さて、当シリーズのラスト問題は循環小数がテーマです。いくぶん面倒な解法を想定しています。電卓も併用しながらで構いません。じっくりお楽しみください。

解答形式

${}$ 解答は求める分数の分子のみを入力してください。
(例)$\dfrac{107}{2025}$ → $\color{blue}{107}$