$11$ 個の実数 $A_0 , A_1 , \cdots , A_{10} $ が $n=0 , 1 , \cdots , 9$ に対して$$\sum_{k=0}^{10}{A_kk^n}=0$$を満たします. $A_0=1$ のとき, $\sum_{k=0}^{10}{A_kk^{10}}$ の値を求めてください. ただし, $0^0=1$とします.
非負整数を答えてください.
次の問題のxとyを求めてください。
3x➕2y🟰x➖y🟰2x➖3y➖7
x=○○、y=○○ の形で回答してください。 xとyは小文字です。 マイナスが付く場合はひらがなの延ばし棒を記入してください。
34人の生徒を3人の班と4人の班に分けたところ、4人の班は3人の班より5つ多くできた。3人の班の数と、4人の班の数をそれぞれ求めなさい
半角で、3人の班=Xで答えるものとする
次の$x,y$についての連立方程式を実数の範囲で解いてください。
$$ \begin{cases} \Large\frac{9}{x^2-xy+y^2}+\frac{7}{x^2+xy+y^2}=\frac{x}{256} \\ \Large \frac{9}{x^2-xy+y^2}-\frac{7}{x^2+xy+y^2}=\frac{y}{256} \end{cases} $$
解となる$(x,y)$の組全てについて$x+y$を足し合わせたものを半角英数字で入力してください。