全問題一覧

カテゴリ
以上
以下

問題文

$n$ を $3$ 以上の整数とする。点 $\mathrm{O}$ を中心とする、半径 $1$ の円の形をしたピザがある。ピザの周上には、等間隔に点 $\mathrm{P}_1,\ldots,\mathrm{P}_n$ が並んでいる。

線分 $\mathrm{OP}_1$ 上に、線分 $\mathrm{OO'}$ の長さが $d$ となるような点 $\mathrm{O'}$ をとる。ここで $0< d < 1$ は定数である。ピザを線分 $\mathrm{O'P}_1,\ldots,\mathrm{O'P}_n$ によって分割し、分けられた $n$ 個のピザのうち線分 $\mathrm{P_1P_2,P_2P_3,\ldots, P_nP_1}$ を含む部分の面積を、それぞれ $S_1,\ldots,S_n$ とする。

$S_i$ の 平均はもちろん $\displaystyle \bar{S}= \frac{1}{n}\sum_{i=1}^{n}S_i=\frac{\pi}{n}$ である。では、$S_i$ の分散 $\displaystyle \sigma^2 = \frac{1}{n}\sum_{i=1}^{n}(S_i-\bar{S})^2$ はどうなるだろうか。以下の空欄を埋めよ。

(1)$\displaystyle \frac{\sigma ^2}{d^{\alpha}}$ が $d$ によらない定数となるような $\alpha$ の値は $\alpha=\fbox{ア}$ である。$n=12$ のとき、$\sigma^2$ を具体的に計算すると

$$
\sigma ^2 = \frac{\fbox{イ}-\sqrt{\fbox{ウ}}}{\fbox{エ}}d^{\fbox{ア}}
$$

である。

(2)極限 $\displaystyle \lim_{n\to\infty}n^{\beta}\sigma^2$ が $0$ でない有限の値に収束するような $\beta$ の値は $\beta=\fbox{オ}$ である。$\displaystyle d=\frac{1}{12\pi}$ のとき、その極限値は

$$
\lim_{n\to\infty}n^\fbox{オ}\sigma^2 = \frac{\fbox{カ}}{\fbox{キクケ}}
$$

である。

解答形式

ア〜カには、0から9までの数字が入る。
(1)の答えとして、文字列「アイウエ」を半角で1行目に入力せよ。
(2)の答えとして、文字列「オカキクケ」を半角で2行目に入力せよ。
なお、「ア」や「オ」には0や1が入ることもありうる。
また、分数はできるだけ約分された形で、根号の中身が最小となるように答えよ。
3行目以降に改行して回答すると、不正解となるので注意せよ。

16日前

18

問題文

$\mathrm{AB=AC}$ の直角二等辺三角形 $\mathrm {ABC}$ がある。点 $\mathrm D$ を、直線 $\mathrm{AD}$ と $\mathrm{BC}$ が平行となるように取ったところ、$\mathrm{BD}=10,\mathrm{CD}=7$ であった。このとき $$\mathrm{AB}^4 + \mathrm{AD}^4 =\fbox{アイウエ}$$ である。ただし $\mathrm{XY}$ で線分 $\mathrm{XY}$ の長さを表すものとする。

解答形式

ア〜エには、0から9までの数字が入る。
文字列「アイウエ」を半角で1行目に入力せよ。
2行目以降に改行して回答すると、不正解となるので注意せよ。


平面上にある直角三角形ABCについて次の問いに答えなさい。

x軸とy軸が直角に交わる平面上にA座標(-2,0)、B座標(0,2)とC座標で結ばれた直角三角形があり、その線分比はAB:BC=1:2である。直線y=1/2 x+aが直角三角形ABCを通る場合、aの値の範囲を求めよ。

解答形式

例) -3~√11の場合、不等式を利用せず~(全角のチルダ)で-3~a~√11と入力してください。数字および特殊符号は全角でお願いします。

[F] 執根号神

masorata 自動ジャッジ 難易度:
3年前

1

問題文

$4$ 点 $\mathrm{A,B,C,D}$ が $\mathrm{AB=BC=CD}=1,\mathrm{DA}=2$ を満たし、さらに線分 $\mathrm{BC}$ と線分 $\mathrm{DA}$ が点 $\mathrm{P}$ で交わっている。線分 $\mathrm{AP}$ の長さが最大となるとき、

$$
\mathrm{AC}=\frac{\sqrt{\fbox{アイ}-\sqrt{\fbox{ウエオ}\ }+\sqrt{\fbox{カキクケ}+\fbox{コサ} \sqrt{\fbox{シスセ}\ }\ }\ }}{\fbox{ソ}}
$$

である。ただし、$\mathrm{XY}$ で線分 $\mathrm{XY}$ の長さを表すものとする。

ヒント

必要であれば以下の事実を用いてよい。

・実数 $a,b,c$(ただし $a\neq-64$ )について、$\displaystyle p=\frac{b+c-a^2}{a+64},q=64p+a^2-b$ とおくと、$x$ についての恒等式

$$
1024x^4+64ax^3+bx^2+2cx+p^2-q=(32x^2+ax+p)^2-q(x-1)^2
$$

が成り立つ(これは、右辺を展開して係数比較することで簡単に確かめられる)。

解答形式

ア〜ソには、0から9までの数字または「-」(マイナス)が入る。
文字列「アイウエオカキクケコサシスセソ」を半角で1行目に入力せよ。
ただし、分数はそれ以上約分できない形で、かつ根号の中身が最小になるように答えよ。