全問題一覧

カテゴリ
以上
以下

問題

以下の問いに答えよ。

(1)$a,b,c,d$ はいずれも $0$ でない実数の定数で、 $ad-bc\neq 0$ を満たしている。実数 $\displaystyle x\neq -\frac{d}{c} $ に対して関数 $f(x)$ を

$$
\displaystyle f(x)=\frac{ax+b}{cx+d}
$$

と定義すると、

$$
\frac{3\left(f''(x)\right)^2-2f'(x)f'''(x)}{\left(f'(x)\right)^2}
$$

の値は $a,b,c,d$ や $x$ によらないある整数となる。その値を求めよ。

(2)実数 $x$ に対して関数 $g(x)$ を

$$
\displaystyle g(x)=\frac{e^{4x+816}-e^{-4x-816}} {e^{4x+817}+e^{-4x-817}} \ \ \
$$

と定義すると、

$$
\displaystyle \frac{3\left(g''(x)\right)^2-2g'(x)g'''(x)}{\left(g'(x)\right)^2}
$$

の値は $x$ によらないある整数となる。その値を求めよ。

解答形式

0から9までの半角数字および-(マイナス)のうち、必要なものを用いて解答せよ。

(1)の答えを1行目に入力せよ。

(2)の答えを2行目に入力せよ。

たとえば、(1)に $816$、(2)に $-817$ と回答したいときは、

816
-817

と入力せよ。

微積分

Hensachi50 自動ジャッジ 難易度:
4月前

5

問題文

下の問題の積分の値を求めなさい。
$$ \int_0^\infty \frac{\ln(x)}{(x^2+1)^2} dx $$

解答形式

例)$-\frac{1}{2}$の場合
-1/2
と半角英数字で入力してください。

二項級数

akaddd 採点者ジャッジ 難易度:
2年前

0

(1). $(1+x)^\alpha\ (\alpha\in{\mathbb{R}})$のマクローリン展開を求めよ.
(2). $\arcsin{x}$のマクローリン展開を求めよ.