下の問題の積分の値を求めなさい。
$$ \int_0^\infty \frac{\ln(x)}{(x^2+1)^2} dx $$
例)$-\frac{1}{2}$の場合
-1/2
と半角英数字で入力してください。
∮(-π/6→π/3) ((sinx)^3)/(sinx+cosx)dxの値を求めよ。
解答は π/a-(√ b+c)/d-(1/e)log(√f+g)の形になります。
a,b,c,d,e,f,gに当てはまる自然数を順に半角で答えてください。
また、1つの値の間は1つずつ空白を開けるようにしてください。
(例)a=2, b=3, c=11,d=5,e=6,f=7,g=8の場合、
2 3 11 5 6 7 8
nを一桁の自然数とする。xについての多項式、
∫(0→x) (t^3 + {1/√(n-2)(n-3)(n-4)} t^-2 +1)^n dt
について、x^6の係数を自然数にするようなnを求めなさい。
半角で一桁の数字を入力してください。
$a$は$x$と独立であるとする。
$x$の方程式
$$(\cos^4x)^{\log_2(a\sin x)+1}=(a\sin2x)^{\log_2(a\sin2x)}$$
の$0\leqq x\leqq \frac\pi2$における解を$y$とする。
この時、以下の値を求めよ。
$$\int_0^1\frac1{\sin^2y}da$$
$$\int^\sqrt2_{-\sqrt2}\sin x\cos x\{\tan x+\tan{(\frac{\pi}{2}-x)}\}dx$$
$f(x)$を$x$の小数部分とする。
以下の値を求めよ。
$$\int^{25}_0f(\sqrt{x})dx$$