全問題一覧

カテゴリ
以上
以下

指数型曲線の長さ2

AS 自動ジャッジ 難易度:
36日前

0

$e$ は自然対数の底とする.座標平面上において
$\ x=t-e^{2t},\ y=2e^t+e^{-t}$
によってパラメータ表示される曲線について,$0\leqq t\leqq \log 2\sqrt2$ 部分の長さを求めよ.

答えは $\displaystyle\frac{\fbox{ (1) }\sqrt{\fbox{ (2) }}}{\fbox{ (3) }}$ の形で表されるので,空欄 $ (1),(2),(3)$ に当てはまる自然数をそれぞれ $1, 2, 3$ 行目に記して答えよ.ただし,最も簡単な形に直して答えること.

指数型曲線の長さ

AS 自動ジャッジ 難易度:
36日前

0

$e$ は自然対数の底とする.
$\ x=(2t-1)e^t,\ y=2(t^2-t+1)e^t$
でパラメータ表示される曲線について,$0\leqq t\leqq 1$ 部分の長さを求めよ.

答えは有理数 $a,b$ を用いて $a+be$ の形で表されるので,$a,b$ の値をそれぞれ $1, 2$ 行目に記して答えよ.
ここで,整数でない有理数は既約分数(分母は自然数,分子は整数で,互いに素)で表し,$\displaystyle\frac{-5}{13}$ なら
-5/13
のように記入する.

微積分

Hensachi50 自動ジャッジ 難易度:
54日前

4

問題文

下の問題の積分の値を求めなさい。
$$ \int_0^\infty \frac{\ln(x)}{(x^2+1)^2} dx $$

解答形式

例)$-\frac{1}{2}$の場合
-1/2
と半角英数字で入力してください。

いつものking property(に似た)問題

nps 自動ジャッジ 難易度:
2月前

1

問題文

∮(-π/6→π/3) ((sinx)^3)/(sinx+cosx)dxの値を求めよ。

解答形式

解答は π/a-(√ b+c)/d-(1/e)log(√f+g)の形になります。
a,b,c,d,e,f,gに当てはまる自然数を順に半角で答えてください。
また、1つの値の間は1つずつ空白を開けるようにしてください。
(例)a=2, b=3, c=11,d=5,e=6,f=7,g=8の場合、
2 3 11 5 6 7 8


問題文

nを一桁の自然数とする。xについての多項式、

∫(0→x) (t^3 + {1/√(n-2)(n-3)(n-4)} t^-2 +1)^n dt

について、x^6の係数を自然数にするようなnを求めなさい。

解答形式

半角で一桁の数字を入力してください。

Final 5

seven_sevens 採点者ジャッジ 難易度:
4月前

4

$a$は$x$と独立であるとする。
$x$の方程式
$$(\cos^4x)^{\log_2(a\sin x)+1}=(a\sin2x)^{\log_2(a\sin2x)}$$
の$0\leqq x\leqq \frac\pi2$における解を$y$とする。
この時、以下の値を求めよ。
$$\int_0^1\frac1{\sin^2y}da$$

Final 1

seven_sevens 採点者ジャッジ 難易度:
4月前

2

$$\int^1_0\int^{\sqrt{1-z^2}}_0\sqrt{1-z^2-y^2}dydz$$

Semi Final 4

seven_sevens 採点者ジャッジ 難易度:
4月前

6

$$\int^\sqrt2_{-\sqrt2}\sin x\cos x\{\tan x+\tan{(\frac{\pi}{2}-x)}\}dx$$

Semi Final 2

seven_sevens 採点者ジャッジ 難易度:
4月前

7

$$\int_{-\sqrt{2}}^{\sqrt{2}}(5^x-5^{-x})dx$$

Semi Final 5

seven_sevens 採点者ジャッジ 難易度:
4月前

9

$f(x)$を$x$の小数部分とする。
以下の値を求めよ。
$$\int^{25}_0f(\sqrt{x})dx$$

Semi Final 3

seven_sevens 採点者ジャッジ 難易度:
4月前

6

$$\int^2_0[2^x]dx$$
ただし[]はガウス記号

Semi Final 1

seven_sevens 採点者ジャッジ 難易度:
4月前

7

$$\int-\frac1{x^2}dx$$