全問題一覧

カテゴリ
以上
以下

互いに接する3円と直線の問題

mathken 自動ジャッジ 難易度:
8日前

0

問題文

$3$ つの円が互いに外接し、かつ各円が直線 $l$ に接している。ある円と直線 $l$ との接点を $O$ とし、他の $2$ 円との接点をそれぞれ $A$ $,$ $B$ とする。 $O$ から直線 $AB$ に下ろした垂線の足を $H$ とする。線分 $AB$ の長さを $d$ として、線分 $OH$ の長さを $d$ を用いて表せ。

(A)

sembri 自動ジャッジ 難易度:
10日前

4

問題文

正整数$N$を$7,10,13,16,19$で割った余りがそれぞれ$2,3,4,5,6$であるとします。このとき$N$を$1729$で割った余りを求めてください。

メリークリスマス!!

Sry 自動ジャッジ 難易度:
11日前

11

$$問 題$$
$自然数Nと素数p,q,rが以下の式を満たすとき、Nを求めよ。$
$$
\begin{cases}
N=p^qq^pr\\
p ^q +q ^p=r
\end {cases}
$$

100G

Ryomanic 自動ジャッジ 難易度:
12日前

5

問題文

$\angle{ADC}=\angle{BCD}=90^\circ,BAD>90^\circ$なる台形$ABCD$について,
$$\angle{BAC}=90^\circ,AB=4,AC=3$$
が成立した.$ABCD$の面積を求めよ.

解答形式

求める値は互いに素な正整数$p,q$を用いて$\frac{p}{q}$と表せるので,$p+q$を解答してください.

RMC005 敗者復活戦P3

MARTH 自動ジャッジ 難易度:
13日前

2

以下の値を素数 $97$ で割った余りを求めてください.
$$\sum_{k=200}^{300}(-4)^{300-k}{}_{2k}\mathrm{C}_{k}\cdot {}_{k}\mathrm{C}_{300-k}\cdot {}_{2k-300}\mathrm{C}_{k-200}$$

[B] Make Square

GaLLium31 自動ジャッジ 難易度:
15日前

33

問題文

$\dfrac{51-n}{n-1}$ が平方数となるような整数 $n$ の総和を解答してください.

(13:17追記  $0$ も平方数に含むとします)

[F] Phi Puzzle

GaLLium31 自動ジャッジ 難易度:
15日前

20

問題文

平方因子を持たない正整数 $n$ であって,$\dfrac{\phi(n)}{\gcd(n,\phi(n))} = 18$ を満たすものの総和を解答してください.

[D] Xmas Function

GaLLium31 自動ジャッジ 難易度:
15日前

18

問題文

$S=\lbrace 0,1, \ldots , 30 \rbrace$ とします.関数 $f:S \rightarrow S$ であって,以下を満たすようなものの個数を $N$ とします.

  • 任意の $x,y \in S$ について,$x^{12}-y^{12}$ が $31$ の倍数ならば,$f(x)^{25}-f(y)^{25}$ も $31$ の倍数.

$N = a \cdot b^c$ であるような正整数 $a,b,c$ について,$a+b+c$ の最小値を解答してください.

[H] Make Square 2

GaLLium31 自動ジャッジ 難易度:
15日前

2

問題文

正整数 $a$ に対して,$\dfrac{n(n+2)}{a}$ が平方数であるような正整数 $n$ が無限に存在しました.さらに小さい方から $i$ 番目のものを $n_i$ とすると,任意の正整数 $i$ が $n_{i+2}+n_{i}=98n_{i+1}+2n_1$ を満たしました.このとき,$a$ としてありうるものの総和を解答してください.

[E] Delete Pairs

GaLLium31 自動ジャッジ 難易度:
15日前

22

問題文

$30$ の正の約数を並べ替えた数列 $A$ としてありうるもの全てに対する,以下の操作方法の個数の総和を解答してください.

  • 「連続する $2$ 数 $A_i,A_{i+1}$ であって $A_i \mid A_{i+1}$ を満たすものを $1$ つ選び,それらをともに $A$ から削除する」という操作を $4$ 回行い,$A$ を空にする.

[G] Oplus Plus

GaLLium31 自動ジャッジ 難易度:
15日前

6

問題文

正整数に対して定義され非負整数値をとる関数 $f$ が以下を満たしています.

  • 任意の正整数 $x,y$ について $f(xy)=f(x) \oplus f(y)$

  • $x$ と $y$ が互いに素ならば $f(xy)=f(x)+f(y)$

このような関数 $f$ について,以下を満たす正整数の組 $(x,y)$ の個数を $c(f)$ とします.$c(f)$ がとりうる値は有限個なので,その総和を解答してください.

  • $x,y$ はともに $30^{10}$ の約数である.

  • $f(xy)=f(x)+f(y)$

追記: $\oplus$ はビットごとの排他的論理和です

[C] 2026 Triangle

GaLLium31 自動ジャッジ 難易度:
15日前

69

問題文

上から $i$ 段目 $(1 \leq i \leq 2026)$ に $i$ 個の正整数を並べて三角形を作る方法であって,どの段も総和が $2026$ となるようなものの個数を素数 $2029$ で割ったあまりを解答してください.