Aさんは次のゲー厶を行った。
Aさんはコインを持っていない。
2つのボタンがある。片方を押すと$1/3$の確率でコイン、もう片方を押すと$2/3$の確率でコインが得られる。4050回ボタンを押して2025個のコインが得られるようにAさんが最善の行動をした際、Aさんは次の条件を満たした。
①4050回スイッチを押した後コインを2025持っていた。
②2n回スイッチを押した後コインをn個持っている、という状態が0以上3回以下発生した。(1≦n≦2024)
条件①②を同時に満たす確率をある既約分数$\frac{a}{b}$を用いて
$\frac{a}{b}×_{4050}C_{2025}×(\frac{2}{9})^{2025}$
と表せるので、a+bを求めよ。
※この問題は人力で解けることを想定していない可能性があります。
平安時代には次のルールがある。
・男性が3日連続女性の家に通ったらその女性と結婚が成立する。
・男性が3年(1095日)間一切女性の家に通わなかったらその女性と離婚が成立する。
1人の男性が同時に女性と結婚できる人数は最大X人であり、女性の家に通いはじめてからX人の女性と結婚するのに必要な日数の最小値はY日である。XとYの10進数における文字列の結合を解答しなさい。ただし、1人の男性が1日に通える女性の家は1つだけである。
(寿命や重婚に対する刑罰は考慮しないものとする)
$\omega$ を $1$ の $3$ 乗根のうち $1$ でないものの一方とします.
$$S={\sum_{k=1}^{2026} \frac{1}{k^2+(2\omega+1)k-1}}$$
としたとき,$\left|\frac{S-1}{S}\right|$ を求めてください.
求める値は互いに素な正の整数 $a,b$ を用いて $\frac{a}{b}$ と表せるので, $a+b$ を解答してください.
$a,b$ を実数とする.$1$ 以上の実数 $k$ に対し,$x,y$ についての連立方程式
$$
\begin{cases}
k\cos x + \dfrac{1}{k}\sin y = a\\[6pt]
k\sin x + \dfrac{1}{k}\cos y = b
\end{cases}\
$$
が $0\le x\le\pi,\ 0\le y\le\pi$ の範囲に解をもつような点 $(a,b)$ の存在する領域を $D_k$ とし,$ab$ 平面における $D_k$ の面積を $S(k)$ とする.
(1) $D_1$ を $ab$ 平面上で求めよ.また,$S(1)$ を求めよ.
(2) $\displaystyle \pi<\lim_{k\to\infty}S(k)<2\pi$ を示せ.
(3) 連立方程式の解がさらに $x=y$ を満たすような点 $(a,b)$ の存在する領域を $E_k$ とする. $k$ が $1$ 以上のすべての実数値をとるとき,$E_k$ が通りうる範囲を $ab$ 平面上で求めよ.
特に指定しません。
$a,b$ を正の整数とする.$2$ 以上の整数 $n$ に対して $n=ab$ と表せるような $(a,b)$ の組について,$a+b$ の最小値を $f(n)$ とする.
例えば, $f(5)=6,\ f(12)=7$ である.
(1) $n$ を正の整数とする.$f\bigl(2\cdot 3^{n}\bigr)$ を $n$ を用いて表せ.
(2) $a,b$ を正の整数とする.方程式
$$
f\bigl(2\cdot 3^{a}\bigr)=f\bigl(4\cdot 3^{b}\bigr)
$$の解が存在するかどうかを,理由を付けて判別せよ.存在するならば、その解を全て求めよ。
特に指定しません。
以下の値を求めてください.
$$\sum_{k=0}^{2026} \frac{k^2}{k^2-2026k+1013×2026}$$
整数で解答してください