円に内接する四角形 $ABCD$ について,線分 $AC$ はその直径をなす.線分 $BD$ の中点を $M$ とすると $AM=AD, BD=12, CD=13$ が成立した.線分 $BC$ の長さの二乗を求めよ.
素数の組 $(p, q, r, s, t)$ について
$$\dfrac{p^4 + q^4 + r^4 + s^4 + t^4 + 340}{8}$$ としてありうる最小の素数値を求めよ.
正の整数 $n$ について,$f(n)$ を $_n\mathrm{C}_k$ が奇数であるような,$0\leq k\leq n$ を満たす整数 $k$ の個数とする.$$f(a)^2+4f(b)=f(c)^3+4$$ かつ $a+b+c=2047$ を満たす正の整数の組 $(a,b,c)$ はいくつ存在するか?
$a,b$ を実数とする.$f(x)=x^4+ax^3+bx^2+ax+1$ は $f(1/2)\cdot f(1/3)=4$ を満たしている.$f(2)+f(3)$ としてありうる最小の正の整数値を求めよ.
鋭角三角形 $ABC$ について線分 $AC$ 上に点 $P$ を取り,線分 $PC$ の垂直二等分線と線分
$BC$ が交わったのでその点を $D$ とする.線分 $AB$ 上の点 $E$ が $ED\parallel AC$ を満たしている.三角形 $PED$ の外接円と線分 $BC$ が $D$ でない点 $F$ で交わっており,$$FA=FC=7, BD=4, PD=5$$ が成り立った.このとき,線分 $AC$ の長さは互いに素な正の整数 $a, b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答せよ.
$\{1,2,…,9999\}$ の部分集合 $S$ であり,任意の $S$ の要素 $a,b(a\neq b)$ について $a+b$ を行ったときに繰り上がりが起きない(どの桁も $10$ を超えない)ようなものについて,その要素数の最大値を求めよ.
自然数 n に対して、次の等式が成り立つことを示しなさい。
1+2+3+⋯+𝑛=𝑛²−(1+2+3+⋯+(𝑛−1))
$a_{1},a_{2}, \cdots , a_{1500}$ は $1$ 以上 $3$ 以下の整数からなる数列であり,$a_{1501}=a_{1} =1,a_{1502}=a_{2}$ と定義すると全ての $1500$ 以下の正整数 $k$ で $a_{k+1} \neq a_{k}$ が成り立ち,かつ $1500$ 以下の正整数 $i$ のうち,
・$(a_{i},a_{i+1})=(1,3)$ となるものがちょうど $132$ 個
・$(a_{i},a_{i+1})=(2,1)$ となるものがちょうど $213$ 個
・$(a_{i},a_{i+1})=(3,2)$ となるものがちょうど $321$ 個
・$(a_{i},a_{i+1},a_{i+2})=(1,2,3)$ となるものがちょうど $123$ 個
ずつ存在します.この数列としてありうるものの数が $3$ で割れる最大の回数を求めてください.(電卓の使用を推奨します.)
半角数字で解答してください.
三角形 $ABC$ があり,線分 $BC$ 上に点 $P$ をとる.三角形 $ABP$$,$ 三角形 $ACP$ の内心をそれぞれ $I,J$ とすると,
$$IJ \parallel BC,\quad AB:AC=4:5,\quad BP=8,\quad CP=9$$
が成立したので三角形 $ABC$ の面積を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
鋭角三角形 $ABC$ があり重心を $G$,垂心を $H$ とします.線分 $GH$ の中点を $M$ とすれば,直線 $AM$ は $ \angle BAC$ を二等分し,
$$BC=30,\quad CH=25$$
が成立しました.このとき線分 $AB$ の長さの $2$ 乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.