この問題は、Prime Prime Prime (Easy)と一部分一致しているため、相違点を赤色で強調しています。
また、必要とされる素数表の大きさがOMCに乗っているものよりも大きいため、この問題に限り、外部の素数表の閲覧を許可します。
$n$ 桁の素数であって,すべての $i,j$ $ (1 \le i $ < $ j \le n)$ において, $i$ 桁目から $j$ 桁目までが素数である数のうち,最大のものを答えてください.
例えば, $23$ は $23(i=1,j=2)$ が全て素数なので条件を満たします.
半角数字で解答してください.
$n$を素因数分解したときの2の指数を$v_{2}(n)$と表します。
この時、$$v_2\left( \prod_{k=1}^{2025} (5^k - 1) \right)$$の値を求めてください。
半角数字で入力してください。
実数係数多項式で次数が $9999$ 以下の $P(x)$ について,$(P(1),P(2), \dotsc P(10000))$ が $(1,2, \dotsc 10000)$ の並べ替えであるとき,$P(10001)$ が考えられる最大値をとるような $P(x)$ の個数を素数 $9973$ で割ったあまりを解答してください.
半角数字で解答してください.
三角形$ABC$の内心を$I$ , 外心を$O$とします。
$AI=5$ , $AO=6$ , $AB+AC:BC=5:2$が成り立っている時、$cos\angle OAI$の値を求めてください。
求める値は互いに素な正整数$a,b$を用いて$\frac{a}{b}$と表せられるので、$a+b$の値を解答してください。
$AB>AC$ を満たす鋭角三角形 $ABC$ において、$\angle A$ の二等分線と $BC$ の交点を $D$ とする。線分 $AD$ 上に $AP:PD=AB:BC, AQ:QD=AC:CB$ を満たす点 $P,Q$ をとり、$AC$上に点 $R$ 、$AB$上に点 $S$ を $BC//PR//QS$ を満たすようにおいた。$\triangle APR$ の外接円と $\triangle AQS$ の外接円の交点を $T(\neq A)$ 、$\triangle BCT$ の内心を $I$ 、直線 $ RS $ と直線 $BI$ ,直線 $CI$ の交点を $U,V$ 、線分 $BC$ ,線分 $UV$ の中点を $M,N$ としたところ$$MN=5,UV=16$$であった。$\triangle BCT$ の内接円の半径が $2$ のとき、$IT$ の長さを求めよ。
求める値の二乗は互いに素な自然数 $p,q$ を用いて $\frac{p}{q}$と表せるので、 $p+q$ の値を答えてください。
この問題は、Prime Prime Prime (Hard)と一部分一致しているため、相違点を赤色で強調しています。
$n$ 桁の素数であって,すべての $i,j$ $ (1 \le i $ ≦ $ j \le n)$ において, $i$ 桁目から $j$ 桁目までが素数である数のうち,最大のものを答えてください.
例えば, $23$ は $2(i=1,j=1),3(i=2,j=2),$$23(i=1,j=2)$ が全て素数なので条件を満たします.
半角数字で解答してください.