全問題一覧

カテゴリ
以上
以下

KOTAKE杯007(P)

MrKOTAKE 自動ジャッジ 難易度:
48日前

19

問題文

$\angle A$ が鈍角の二等辺三角形 $ABC$ があり,外接円を $\Omega$ とします.$\Omega$ の点 $C$ を含まない弧 $AB$ 上に点 $P$ をとり,直線 $BP$ と点 $C$ における $\Omega$ の接線の交点を $Q$ とし,直線 $AP$ と線分 $CQ$ の交点を $R$ とすると以下が成立しました.
$$BC=40,\quad BP=14,\quad QR=9$$
このとき線分 $AP$ の長さの $2$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください

KOTAKE杯007(M)

MrKOTAKE 自動ジャッジ 難易度:
48日前

20

問題文

三角形 $ABC$ があり内心を $I$ とし,辺 $BC$ の中点を $M$ とすると,
$$AB:AC=3:5,\quad AI=IM=20$$
が成立したので線分 $AB$ の長さの $2$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯007(B)

MrKOTAKE 自動ジャッジ 難易度:
48日前

47

問題文

一辺の長さが $10$ である正方形 $ABCD$ があり,辺 $AB,BC,CD$ 上にそれぞれ点 $P,Q,R$ を三角形 $PQR$ が $PQ=QR$ の直角三角形になるようにとると,五角形 $APQRD$ の周の長さは $36$ であった.このとき五角形 $APQRD$ の面積を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯007(Q)

MrKOTAKE 自動ジャッジ 難易度:
48日前

25

問題文

鋭角三角形 $ABC$ があり,$A$ から $BC$ におろした垂線の足を $H$ とします.三角形 $ABC$ の外接円の,$C$ を含まない方の弧 $AB$ 上に点 $P$ をとれば,
$$\angle APH=90^\circ ,\quad BH=3,\quad CH=4,\quad AP=10$$
が成立したので線分 $AB$ の長さの $2$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯007(S)

MrKOTAKE 自動ジャッジ 難易度:
48日前

19

問題文

$AB<AC$ を満たす三角形 $ABC$ があり,外接円を $\Gamma$ ,$A$ 混線内接円を $\Omega$ とします.$\Gamma$ と $\Omega$ の接点を $P$ とし,$\Gamma$ の点 $A$ を含む方の弧 $BC$ の中点を $M$ とし,線分 $MP$ と $\Omega$ の交点のうち $P$ でない方を $X$ ,線分 $AP$ と $\Omega$ の交点のうち $P$ でない方を $Y$ ,直線 $AX$ と $\Gamma$ の交点のうち $A$ でない方を $Z$ とすると以下が成立しました.
$$XY=3,\quad XZ=15,\quad PY=10$$

このとき線分 $AM$ の長さは互いに素な正の整数 $a,b$ を用いて $\displaystyle \frac{a}{b}$と表されるので $a+b$ を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯007(A)

MrKOTAKE 自動ジャッジ 難易度:
48日前

52

問題文

円に内接する四角形 $ABCD$ があり,対角線の交点を $E$ とすると,
$$BE=CD,\quad AB=16,\quad BD=35,\quad CE=25$$
が成立しました.このとき線分 $AC$ の長さを解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯007(H)

MrKOTAKE 自動ジャッジ 難易度:
48日前

45

問題文

$AB=15,AC=20$ の鋭角三角形 $ABC$ があり,辺 $AC$ 上に $AB=AD$ となる点 $D$ をとります.線分 $BD$ の中点を $M$ とすると三角形 $ADM$ の外接円は直線 $CM$ に点 $M$ で接したので線分 $BC$ の長さの $2$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯007(I)

MrKOTAKE 自動ジャッジ 難易度:
48日前

29

問題文

三角形 $ABC$ があり,内心を $I$ とし直線 $AI$ と $BC$ の交点を $D$ とすると三角形 $BDI$ の外接円は三角形 $ABC$ の外接円に点 $B$ で内接し,以下が成立しました.
$$BD=12,\quad BI=10$$
このとき線分 $AC$ の長さを解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯007(O)

MrKOTAKE 自動ジャッジ 難易度:
48日前

25

問題文

$AB<AC$ を満たす鋭角三角形 $ABC$ があり,点$A,B,C$ から対辺におろした垂線の足をそれぞれ $D,E,F$ とします.半直線 $EF$ と直線 $BC$ の交点を $P$ とすれば,
$$AC=BP,\quad BD=60,\quad CD=92$$
が成立したので線分 $AB$ の長さの $2$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯007(R)

MrKOTAKE 自動ジャッジ 難易度:
48日前

27

問題文

三角形 $ABC$ があり,内心を $I$ とします.直線 $BI,AC$ の交点を $D$ とし,端点を除く線分 $BC$ 上に $4$ 点 $ABDE$ が共円となるように点 $E$ をとると,直線 $AI,DE$ は三角形 $ABC$ の外接円上で交わり,以下が成立しました.
$$AD=2,\quad BE=3$$
このとき線分 $AC$ の長さは.正の整数 $a,b,c$ を用いて$\frac{b+\sqrt{c}}{a} $ と表されるので $a+b+c$ を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯007(C)

MrKOTAKE 自動ジャッジ 難易度:
48日前

45

問題文

外接円 $\Omega$ を持つ鋭角三角形 $ABC$ があり,垂心を $H$ とします.直線 $AH$ と $\Omega$ の交点のうち $A$ でないものを $P$ とすれば,
$$BP=HP=15,\quad AH=9$$
が成立したので線分 $AC$ の長さの $2$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯007(E)

MrKOTAKE 自動ジャッジ 難易度:
48日前

50

問題文

$AB<AC$ なる三角形があり,辺 $BC$ の中点を $M$ とし直線 $AM$ と三角形 $ABC$ の外接円との交点のうち $A$ でないものを $D$ とすれば,
$$AB=BD,\quad AM=3,\quad CD=2$$
が成立したので線分 $BC$ の長さの $\mathbf{4}$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.