全問題一覧

カテゴリ
以上
以下

定積分を求めよ

mammal 自動ジャッジ 難易度:
2月前

0

次の定積分を求めよ

https://photos.app.goo.gl/kgxzekbPjMcFRr3x7
問題文を入力してください

解答形式

半角数字で分数の場合は/
累乗は^
I=〇〇

公立高校入試風 平面図形

gurotan 採点者ジャッジ 難易度:
3月前

0

画像付き


台形ABCDにおいて、∠B=∠C=90°であり、
AB=4で、2点B,Dは直線AEについて対称である。BE=3となる点EをBE上にとり、∠BEF=90°となるAD上の点をFとする。また、BDについて、AE,EFとの交点をそれぞれG,Hとする。このとき、次の問いに答えよ。

⑴△ABC∽△BCDを証明せよ。
⑵∠BAE=a°とするとき、4点A,B,E,Dを通る円において、弧ABEDの長さを求めなさい
⑶△GEHの面積を求めなさい

証明なので、⑴は厳密に
⑵,⑶は答えのみでお願いします
公立高校を意識するとしたら、15分くらいですかね

中1向け

gurotan 自動ジャッジ 難易度:
3月前

1

問題

円盤型時計において、7時から8時までの間に時針と分針の間の時計回りの角度が35°になるのは、早い順に、7時X分と7時Y分である。
XとYを求めよ。

解答形式

X=m+◯/⬜︎
Y=n+⭐︎/△

全て半角で2行に分けて書いてください
m,nは自然数、分数部分は最後まで約分してください

素数

katsuo.tenple 自動ジャッジ 難易度:
3月前

30

問題文

4a²+b²+c²=d²を満たす素数の組について、
abcdの総和を求めよ。

解答形式

半角で答えて下さい。

方程式

katsuo.tenple 自動ジャッジ 難易度:
3月前

2

問題文

方程式x⁶−6x⁵+15x⁴−47x³+15x²−6x+1=0の実数解を求めて下さい。

解答形式

正の整数a.b.cを用いて$\frac{b±√c}{a}$の形で表せられるので、a+b+cの値を半角で解答して下さい。

数列

11iill 採点者ジャッジ 難易度:
3月前

1

a,bはともに正の数とする。

長さに上限がない定規が二つある。二つの定規はともに等間隔に目盛が刻んである。定規Aの目盛の間隔はaで、定規Bの目盛の間隔はbである。
定規Aと定規Bが目盛が二か所で重なることはないための、a,bに関する必要十分条件を求めよ。

F

poino 自動ジャッジ 難易度:
3月前

32

問題文

通常のサイコロを,素数の目が $2$ 回出るまで振り続けます.振った回数が $10$ 以下の素数である確率は互いに素な正整数 $p,q$ を用いて $\dfrac{p}{q}$ と表せるので,$p+q$ を解答してください.
通常のサイコロとは,$1$ から $6$ までの目が存在し,それらが等確率に出現するサイコロを指します.

解答形式

半角数字で解答してください.

B

poino 自動ジャッジ 難易度:
3月前

48

問題文

赤いボールと青いボールがそれぞれ十分に入っている袋から $50$ 個のボールを取り出して一列に並べました.このとき,次の条件を満たす取り出し方において,取り出した青いボールの個数としてあり得る値の総和を求めてください.
 ・連続する $3$ 個のボールの少なくとも $1$ つは赤いボールである.

解答形式

半角数字で解答してください.

E

Nyarutann 自動ジャッジ 難易度:
3月前

68

問題文

$a, b$ を整数とします.$x$ についての方程式
$$
x^2+ax+b=0
$$について,$a+b=k$ となるすべての $(a, b)$ の組についてそれぞれの方程式を解いていくと,方程式が整数解をもつ(重解含む)ような $(a, b)$ の組が $4$ 種類のみ存在しました.$0≦k≦20$ としたとき, $k$ としてありうる値の総和を求めてください.

解答形式

半角数字で解答してください。

D

poino 自動ジャッジ 難易度:
3月前

58

問題文

正整数 $a,b$ の最大公約数は $12$ ,最小公倍数は $360$ でした.このとき $(a,b)$ としてあり得る組すべてについて $a+b$ の総和を求めてください.

解答形式

半角数字で解答してください.

H

poino 自動ジャッジ 難易度:
3月前

32

問題文

$$2^p+q^2=5r$$
を満たす $100$ 以下の素数の組 $(p,q,r)$ 全てにおいて,$pqr$ の総和を求めてください.

解答形式

半角数字で解答してください.

A

poino 自動ジャッジ 難易度:
3月前

48

問題文

実数 $a,b$ が $a+b=10$ を満たすとき,$a^3+b^3$ の最小値を求めてください.

解答形式

半角数字で解答してください.