$\angle A$ が鈍角である内接四角形 $ABCD$ があり,三角形 $ABD$ の内接円と $AB,AD$ の接点をそれぞれ $P,Q$ とし,三角形 $BCD$ の内接円と $BC,CD$ の接点をそれぞれ $R,S$ とします.三角形 $ABD$ における $\angle A$ 内の傍接円と直線 $AB$ の接点を $T$ とすると,以下が成立しました.
$$BT=BR,\quad PR=6,\quad QS=7,\quad BD=9$$
このとき三角形 $BPR$ の面積の $2$ 乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
鋭角三角形 $ABC$ があり重心を $G$,垂心を $H$ とします.線分 $GH$ の中点を $M$ とすれば,直線 $AM$ は $ \angle BAC$ を二等分し,
$$BC=30,\quad CH=25$$
が成立しました.このとき線分 $AB$ の長さの $2$ 乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
円に内接する四角形 $ABCD$ があり,対角線の交点を $E$ とすると,
$$BE=CD,\quad AB=16,\quad BD=35,\quad CE=25$$
が成立しました.このとき線分 $AC$ の長さを解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
三角形 $ABC$ があり,内心を $I$ とします.直線 $BI,AC$ の交点を $D$ とし,端点を除く線分 $BC$ 上に $4$ 点 $ABDE$ が共円となるように点 $E$ をとると,直線 $AI,DE$ は三角形 $ABC$ の外接円上で交わり,以下が成立しました.
$$AD=2,\quad BE=3$$
このとき線分 $AC$ の長さは.正の整数 $a,b,c$ を用いて$\frac{b+\sqrt{c}}{a} $ と表されるので $a+b+c$ を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
$202\times5$ のマス目があり,それぞれのマスに上下左右のいずれかの矢印が書かれており,以下の $2$ つを満たしました.
任意のマスについて,そのマスに書かれている矢印の方向に動くということを繰り返すことで元のマスに戻ることができる.
互いに向かい合っているような矢印は存在しない.
$3$ 列目に書かれた $202$ 個の矢印の中に,左向きの矢印は存在しない.
条件を満たすように矢印を書き込む方法は $N$ 通りあります.$N$ を$2$ つの素数の積 $197\times199$ で割った余りを求めてください.
半角数字で解答してください.
三角形 $ABC$ において,$\angle{A}, \angle{B}, \angle{C}$ の角の二等分線と辺 $BC, CA, AB$ との交点を $D, E, F$ ,直線 $CF$ と $DE$ の交点を $X$ ,三角形 $ABC$ の外接円と直線 $AD, AX$ の交点を $M, N$ とすると,以下が成り立ちました.
$$
MN=NC, BD=4, DC=6
$$このとき,三角形 $ABC$ の面積を求めてください.ただし,答えは 正整数 $a, b, c$ ( $a$ と$b$ は互いに素,$c$ は平方因子を持たない)を用いて $\dfrac{b\sqrt{c}}{a}$ と表されるので $a+b+c$ の値を解答してください.
半角数字で解答してください.
$$\sum_{i=1}^{n} x_i^n = y^n$$
$x_i$がすべて互いに素でnが6以上のときこの式を満たす自然数は高々有限個しか存在しない。
この命題をABC予想を真として、真か偽を証明しなさい。