正三角形 $ ABC$ の辺 $AB,BC,CA$ 上にそれぞれ点 $P,Q,R$ があり,
$$PQ=3,\ \ \ \ QR=5,\ \ \ \ RP=7,\ \ \ \ AB=9$$ を満たしています.このとき,線分 $AQ$ の長さは互いに素な整数 $a,b$ を用いて $\displaystyle \frac{a}{b}$ と書けるので $a+b$ の値を解答してください.
答えは正の整数値となるので, その整数値を半角で入力してください.
$$
l=|\int_{0}^{cos60°}2m^\frac{log_21024}{log_24}|\\について、l<0のときの値?
$$
$$
{\sqrt{cos60°*log_\frac{1}{2}\frac{1}{2}^{{{{{{{log_\frac{1}{2}\frac{1}{4}}^{log_\frac{1}{2}\frac{1}{8}}}^{log_\frac{1}{2}\frac{1}{16}}}}^{log_\frac{1}{2}\frac{1}{32}}}}}}}
$$
Aaaaaa アアアア漢、漢漢
漢あ漢あああああ漢あ
あああ漢漢あアアアアア
あーあぁ
漢ぁああ漢漢!(Aa!)漢Aaa♡ aa 漢漢!(Aa!)
あああーあああー?(あああああーあ)
アァ?( ゚Д゚) あああああああ、漢あああーあ(あ〜!)
漢漢!! アア漢アアアアア☆
漢漢あ あ漢ああああ
漢ああああああ(ああ!)
漢漢あ 漢あ漢あ
漢漢あ 漢ああ?♡(あぁ)
あぁ ああああああ
漢ああ漢ぁあ
漢漢ああ漢あ漢あああ
あああああ漢
(あああぁあ!あああぁあ!漢ぁあああああぁあ!)
ああ漢漢あ漢ああああああぁ?
(あああぁあ!あああぁあ!あああああァ〜!)
あぁ、あああああ。あ漢あ漢ああ〜^^
アアアア漢、漢漢(あぁあぁーあ!)
アアアア漢漢あ漢漢(あぁあぁーあ!)
ああああぁああああ 漢あ漢ああああああ
Aaaaaa アアアア漢、漢漢(あぁあぁーあ!)
漢あ漢あああああ漢あ(Aaa!)
あああ漢あああ 漢漢ああ漢あぁあ
漢漢あアア あああああ
(あああぁあ・・・)
ああ。漢あ漢ああ、ああああ漢漢あ漢あ漢あああ
漢漢ぁああああああぁ!
あーああ、漢あaaaあああ。
(あああぁあ・・・ああ、あぁあ漢ああァ〜〜〜)
漢ぁああ漢漢!(Aa!)漢Aaa♡ aa 漢漢!(Aa!)
あああーあああー?(あああああーあ)
アァ?( ゚Д゚) あああああああ、漢あああーあ(あ〜!)
漢漢!! アア漢アアアアア☆
あぁーあ、漢漢ああああああぁァーあ
漢漢漢アァアアーアァアアああ漢漢あぁーあ
ああ、漢ああぁあ漢あアアアアあぁああぁあ
あぁーあ漢あああああああ
あぁーあ (漢ああ〜ァ)
アアアア (漢ああ〜ァ)
ああああ (漢ああ〜ァ)
漢ぁあああぁああああああ?
漢あああ (漢ああ〜ァ)
ああああ (漢ああ〜ァ)
あーあぁ あーあぁ あぁあああ〜!a
ああああああああ あ漢あぁああ漢あぁあ
ああ漢漢あああ アアあああーあ
漢漢漢漢 111漢
漢漢漢漢 あ・あ・あ・あ♡
漢漢☆ああアーーーーア(あぁぁあぁぁぁ〜〜〜)
あああぁあぁ!ああアーーーーア(あぁぁあぁぁぁ〜〜〜)
ああああぁ!ああアーーーーア(あぁぁあぁぁぁ〜〜〜)
ああアーーーーア(あぁぁあぁぁぁ〜〜〜)
漢ああ漢。漢ああアアアーアァアあ、漢あ漢あ漢あ漢ああ漢。
漢ああアアアアあ漢あ漢ああ漢漢ああ、漢漢あ漢。
あああ、ああアーアあああああ。
「あああ、漢ああ漢あああ・・・」
漢漢 ああ漢あ漢ああ
漢ああ漢あああああ
漢ぁ漢あアァアアアあ 漢ああ漢ああああ
Aaaaaa 漢あ漢ああ漢漢あ
あぁあ漢あ漢あ・・・
『漢漢ああ漢あああ』
あぁあああ漢漢あああああ
あ漢ああ漢あ漢ああああ漢漢ああ、漢あ漢漢ああああ?
あぁ、漢あああ。ああ、あああぁーああああああああ!
アアアア漢、漢漢(あぁあぁーあ!)
ああああ漢漢あアアアア(あぁあぁーあ!)
アアアアああああ ああ漢あ漢あああああ
Aaaaaa アアアア漢、漢漢(あぁあぁーあ!)
漢あ漢あああああ漢あ(Aaa!)
あああ漢あああ 漢漢ああ漢あぁあ
漢漢あアア あああああ
あああ漢漢あアアアアア
漢ぁああ漢漢!(Aa!)漢Aaa♡ aa 漢漢!(Aa!)
あああーあああー?(あああああーあ)
アァ?( ゚Д゚) あああああああ、漢あああーあ(あ〜!)
漢漢!! アア漢アアアアア☆
ああぁあーあ、ああああああ。
曲名を入力