全問題一覧

カテゴリ
以上
以下

柏陽祭2025 (B)

ulam_rasen 自動ジャッジ 難易度:
3月前

39

辺$AB$と辺$BC$と辺$CD$の長さが等しい凸四角形$ABCD$について, 辺$BC$と辺$AD$の中点をそれぞれ$M$, $N$としたところ, 以下が成り立ちました.
$$
\angle BAD=75°, \angle CDA=45°, MN=3
$$

このとき, 四角形$ABCD$の面積は正整数$a, b$を用いて$a+\sqrt{b}$ と表すことができるので, $a+b$ の値を求めてください.

柏陽祭2025 (H)

ulam_rasen 自動ジャッジ 難易度:
3月前

19

外接円を$\Omega$, 内心を$I$とする鋭角三角形$ABC$について, 円$Γ$は円$\Omega$に内接し, 辺$AC$, 辺$BC$にも接しています. 円$\Gamma$と円$\Omega$, 辺$AC$との接点をそれぞれ$T, D$とし, 直線$TD$と円$\Omega$の交点を$M(\neq T)$, 直線$AI$との交点を$F$, 直線$TI$と直線$AB$, 円$MDI$の交点をそれぞれ$G$, $K(\neq I)$とします. さらに, 円$MDI$内に点$H$をとったところ, これは円$TAK$上にありました. また, 円$GHK$と直線$MK$の交点を$J(\neq K)$とすると, 直線$GJ$, 直線$AK$, 円$TAD$が一点で交わったのでこれを$L$とします.
$$
FG=FH, MJ:KJ=1:3, LJ=30
$$
が成立するとき, 線分$IK$の長さを二乗した値を求めてください.

柏陽祭2025 (D)

ulam_rasen 自動ジャッジ 難易度:
3月前

22

問題文

$AB>AC$を満たす鋭角三角形$ABC$の外心を$O$, $\angle BAC$の二等分線と直線$BO$の交点を$D$とします.
円$ABC$について弧$BAC$の中点を$M$とし, 直線$AB$と直線$CM$の交点を$E$とすると以下が成り立ちました.
$$
\angle ADE=\angle AME, AE=25, BE=96
$$
このとき, 辺$AC$の長さは互いに素な正整数 $a,b$ を用いて$\Large\frac{a}{b}$と表せるので $a+b$ の値を解答してください.

各桁の積

smasher 自動ジャッジ 難易度:
3月前

9

問題文

ある非負整数$n$に対し、$f(n)$で$n$の各桁の積を表すものとする。
$n=f(n)$を満たす$n$の個数を求めよ。

解答形式

有限ならば半角数字でその個数を、無限ならば$-1$を入力してください。

無限入れ子根号の発散性

Hensachi50 採点者ジャッジ 難易度:
3月前

0

問題文

$$\sqrt{2+\sqrt{3+\sqrt{5+\sqrt{7+\sqrt{11+\sqrt{13+...}}}}}}$$
この無限入れ子根号は、発散するのか。

解答形式

証明をしてください。

無限入れ子根号の発散性

Hensachi50 採点者ジャッジ 難易度:
3月前

0

問題文

$$\sqrt{2+\sqrt{3+\sqrt{5+\sqrt{7+\sqrt{11+\sqrt{13+...}}}}}}$$
この無限入れ子根号は、発散するのか。

解答形式

証明をしてください。


問題文

初めのブロックの体積をxとし、それを二等分する作業一回をnとする。
例:1→2→4→8 のように二等分する。この時、n =3であり、最後のブロックの数は8である。また全体を通して7回二等分している。この時、次の問いに答えよ。

(1)最後のブロックの数が4194304の時、nの値を求めよ
(2)n =12であり、最後のブロック1つの体積が10であるとき、xの値を求めよ
(3)全体を通して二等分した回数をnを用いて表せ
(4)今まで二等分されたブロックの数の和をnを用いて表せ
例:n=1の時、ブロックの和は3、n=2の時、ブロックの和は7、n=3の時、ブロックの和は15

解答方法

(1)◯◯
(2)◯◯
(3)◯◯
のように行を変えて答えなさい。
n=、x=などは必要ありません。 累乗の指数の項が複数ある場合は()をつけなさい
例:3^(x+3)、4^3
マイナスはハイフンで答えなさい。→-

3月前

0

問題文


(1) 自然数 $n$ について、$\cos\theta = x$ とおくと $\cos n\theta$ が $x$ の多項式で表せ、またその係数はすべて整数となることを示せ。

(2) $\cos 36^\circ,\ \cos 72^\circ$ を求めよ。

(3) 自然数 $n$ について、$n$ が 5 の倍数でないとき、$\cos(n^\circ)$ は無理数であることを示せ。

(4) $n$ 次の多項式

$$
A_n x^n + A_{n-1} x^{n-1} + \cdots + A_1 x + A_0 = 0
$$

について、これが有理数解をもつならば、その解は

$$
\frac{\text{定数項 } A_0 \text{ の約数}}{\text{最高次の係数 } A_n \text{ の約数}}
$$

の形で表されることを示せ。

(5) $0<n<90$ を満たす自然数 $n$ について、$\cos(n^\circ)$ が有理数となる $n$ はいくつ存在するか。


せいすう

k4rc 自動ジャッジ 難易度:
3月前

18

問題文

$4999$ 以下の素数の組 $(p,q,r,s)$ が以下の式を満たしているとき,積 $pqrs$ が取りうる値の総和を解答してください.
$$ pqr+pqs-p^2 = q^2+2 $$

解答形式

正の整数を半角で解答.


三角形 ABC の頂点は A(0,0), B(6,0), C(4,6) である。

AC の中点を通り、BC に垂直な直線の方程式を求めよ。

この直線と AB の交点を求めよ。

この交点から頂点 C までの距離を求めよ。

問題1

tomorunn 自動ジャッジ 難易度:
3月前

11

問題文

三角形 $OAB$ がある.点 $C$ を$\angle CAO=\angle BAO$, $AC\perp CO$ となるように辺 $AB$ に対し点 $O$ と同じ側に取る.
また,点 $B$ から直線 $CO$ に引いた垂線の足を $D$ とする.
$C$ を通り直線 $OB$ に垂直な直線と $D$ を通り直線 $OA$ に垂直な直線の交点を $G$ とするとき,
$CD=17,\, GO=8,\, GC=15$ である.
このとき $AB$ の長さは互いに素な正整数 $a,b$ と平方因子を持たない正整数 $c$ を用いて $\dfrac{b\sqrt{c}}{a}$ と書けるので,$a+b+c$ を求めよ.

解答形式

半角数字で入力してください。

問題5

tomorunn 自動ジャッジ 難易度:
3月前

8

問題文

区別できる6個の箱に区別できる球を12個入れる(球が1つも入っていない箱があってもよい).
$i$ 番目の箱に入っている玉の数を $A_i$ とする.
入れ方すべてについて,積 $A_1^2 A_2^2\cdots A_6^2$ を計算し,その和を求めよ.

解答形式

半角数字で入力してください。