全問題一覧

カテゴリ
以上
以下

糞問

kikutaku 採点者ジャッジ 難易度:
3月前

0

問題文

2022^2022を10で割った余り。

解答形式

どうやってといたかもかいてね。
ひらがなでいいよ。
これはさんすうだからね。

幾何

katsuo_temple 自動ジャッジ 難易度:
4月前

9

問題文

三角形$ABC$において,$A,B,C$から対辺に下ろした垂線の足をそれぞれ$D,E,F$とし,垂心を$H$とします.三角形$DEF$の外接円と三角形$HBC$の外接円の交点を$P,Q$とし,$EF$の中点を$M$とします.直線$HM$と直線$PQ$の交点を$R$とすると,$DR$は$AB$の中点を通り,$BC$の中点を$N$とすると,$$ND=2 CE=5$$が成立しました.このとき,$AB$の長さの二乗は互いに素な正整数$a,b$を用いて$\dfrac{a}{b}$と表せるので,$a +b$の値を解答して下さい.

解答形式

半角で解答して下さい.

積分計算の基礎

astraea 自動ジャッジ 難易度:
4月前

3

問題文

$\alpha$が$\tan\alpha= \frac{1}{\sqrt{2}}$($0<\alpha< \frac{π}{2}$)を満たす定数であるとき、定積分$ \frac{1}{π}\int_{\alpha}^{\frac{π}{4}} \frac{\tan^{3}θ+\tanθ}{\tan^{4}θ-\tan^{2}θ+1}dθ $の値を求めよ。

解答形式

分母を有理化すると自然数$a,b$を用いて$ \frac{\sqrt{a}}{b}$と表されるので、$a+b$の値を半角入力の数字のみで答えてください。

素因数分解

sembri 自動ジャッジ 難易度:
4月前

18

63999271を素因数分解した時に出てくる素因数全ての和を求めなさい。

例:35の時
 5+7=12と解答。

くそなぞなぞπ

yu23578 自動ジャッジ 難易度:
4月前

3

問題文

πの翻訳ってなーんだ?

解答形式

カタカナで解答してください

Lifedays

GaLLium31 自動ジャッジ 難易度:
4月前

55

問題文

$ \pi$ ナポゥくんの生まれた日からの日数を $N$ とします.
$ \pi$ ナポゥくんは既に $3$ 歳の誕生日を迎えていますが,$28$ 歳の誕生日は迎えていません.
$N$ の各桁の総和が $22$ であるとき、$N$ として考えられる正整数はいくつありますか.

解答形式

半角英数字で解答してください.

Sukosi Kantanna Geometry

Germanium32 自動ジャッジ 難易度:
4月前

29

問題文

三角形$ABC$の内心を$I$ , 外心を$O$とします。
$AI=5$ , $AO=6$ , $AB+AC:BC=5:2$が成り立っている時、$cos\angle OAI$の値を求めてください。

解答形式

求める値は互いに素な正整数$a,b$を用いて$\frac{a}{b}$と表せられるので、$a+b$の値を解答してください。

Maximize Next

GaLLium31 自動ジャッジ 難易度:
4月前

22

問題文

実数係数多項式で次数が $9999$ 以下の $P(x)$ について,$(P(1),P(2), \dotsc P(10000))$ が $(1,2, \dotsc 10000)$ の並べ替えであるとき,$P(10001)$ が考えられる最大値をとるような $P(x)$ の個数を素数 $9973$ で割ったあまりを解答してください.

解答形式

半角数字で解答してください.

Yaocho nyokki (Hard)

GaLLium31 自動ジャッジ 難易度:
4月前

27

問題文

$30$ 人の人が $\pi$ ナポゥ君の主催するたけのこニョッキ大会に参加します.ルールは次の通りです.

  • $i=30,29, \dotsc,1$ の順に $1$ 人 $1$ つの数 $i$ を叫んでいき,最後まで叫ぶことができたら成功である.もし $i$ を複数人が叫んでしまったり,だれも叫ばなかったりした場合は失敗である.

なかなか成功しないことに気づいた $\pi$ ナポゥ君は,次のように八百長をすることにしました.

  • はじめに $30$ 人それぞれに正整数を与え,$i=30,29,\dotsc,1$ について以下を繰り返す.
    • まだ叫んでいない人の内,与えられた数が $i$ の約数もしくは倍数である人は,数 $i$ を叫ぶ.

このたけのこニョッキが成功するような,$30$ 人に与えられる正整数の総和の最小値を解答して下さい.

解答形式

半角数字で解答してください.

Penguin Refrection

GaLLium31 自動ジャッジ 難易度:
4月前

43

問題文

正三角形 $ABC$ の内部を以下のように歩く移動するペンギンがいる.

・ 常に直進するが,辺(頂点を除く)にぶつかった場合は,辺に対して今移動してきた直線と対称な直線へ方向転換する.頂点についた場合,その時点で歩行をやめる.

また,$0\leq p \leq 1$を満たす実数 $p$ に対して,$f(p)$を以下のように定める.

・$f(p)$は,$AC$ を $p:1-p$ に内分する点を $D$ とし,このペンギンがはじめ $B$ にいて、$D$ に向かって直進したときの,ペンギンの歩行が止まるまでに辺(頂点を除く)にぶつかった回数

正整数 $n$ に対して,$f(p)=n$ を満たす $p$ の総和が $9$ であったとき,$n$ としてありうる値の総積を求めてください.

解答形式

非負整数を半角英数字で解答してください.

Yaocho nyokki (Easy)

yu23578 自動ジャッジ 難易度:
4月前

29

問題文

$314$ 人の人が $\pi$ ナポゥ君の主催するたけのこニョッキ大会に参加します.ルールは次の通りです.

  • $i=1,2, \dotsc,314$ の順に $1$ 人 $1$ つの数 $i$ を叫んでいき,最後まで叫ぶことができたら成功である.もし $i$ を複数人が叫んでしまったり,だれも叫ばなかったりした場合は失敗である.

なかなか成功しないことに気づいた $\pi$ ナポゥ君は,次のように八百長をすることにしました.

  • はじめに $314$ 人それぞれに人$1,$ 人$2,$ ... 人$314$ と名付け,次に,人$i$ $(2 \le i \le 314)$ に $1$ 以上 $314$ 以下のいくつかの正整数を与える.そして, $i=1,2, \dotsc,314$ について以下を繰り返す.
    • $i=1$ ならば人$1$ が叫ぶ.そうでないなら,まだ叫んでいない人それぞれについて,与えられた数の集合を $S$ として,$S$ の中にもう叫んだ人$j$が含まれている場合,その人が数 $i$ を叫ぶ.

このたけのこニョッキが成功するような,$313$ 人に対する正整数の与え方の場合の数が $2$ で最大何回割れるかを解答してください.ただし, $314$ 人の名付け方は固定されているものとします.

解答形式

半角数字で解答してください.

Prime Prime

Hapican_ 自動ジャッジ 難易度:
4月前

96

問題文

$0$ から $9$ まで書かれたカードがそれぞれ $1$ 枚ずつ $10$ 枚あります。これらを $1$ 列に並べ替えてからいくつかの部分に区切ると、それぞれの部分を $10$ 進数で読んだ数はすべて素数になりました。このとき、できた素数の総和としてありうる最小の値を求めてください。ただし、それぞれの部分の最初のカードに書かれた数は $0$ でないものとします。

解答形式

半角数字で答えてください。