全問題一覧

カテゴリ
以上
以下

sEigEn sign

piroshiki 自動ジャッジ 難易度:
4月前

15

問題文

$\lim\limits_{n\to\infty} n\sin\frac{2π}{n} = mπ$ である。
$m$の値を求めよ。

解答形式

$m$は2つの実数$a,b$を使って $\frac{a}{b}$と表せる。
$m$を分母が有理化された既約分数の形にした時の$a+b$を解答すること。

暁山瑞希 誕生日

shakayami 自動ジャッジ 難易度:
4月前

8

三角形 $ABC$ について, 内心を $I$ , $A$ に関する傍心を $I_A$ , $\angle A$ の二等分線と $BC$ の交点を $D$ , 三角形 $ABC$ の外接円上の点であって, 点 $A$ を含まない方の弧 $BC$ の中点を $M$ とします.

$AM=27,MI_A=8$ のとき, $ID$ の長さを求めてください. ただし, 答えは有理数となるため, 既約分数 $a/b$ と書いたときの $a+b$ を答えてください.

糞問

kikutaku 採点者ジャッジ 難易度:
4月前

0

問題文

2022^2022を10で割った余り。

解答形式

どうやってといたかもかいてね。
ひらがなでいいよ。
これはさんすうだからね。

幾何

katsuo_temple 自動ジャッジ 難易度:
4月前

9

問題文

三角形$ABC$において,$A,B,C$から対辺に下ろした垂線の足をそれぞれ$D,E,F$とし,垂心を$H$とします.三角形$DEF$の外接円と三角形$HBC$の外接円の交点を$P,Q$とし,$EF$の中点を$M$とします.直線$HM$と直線$PQ$の交点を$R$とすると,$DR$は$AB$の中点を通り,$BC$の中点を$N$とすると,$$ND=2 CE=5$$が成立しました.このとき,$AB$の長さの二乗は互いに素な正整数$a,b$を用いて$\dfrac{a}{b}$と表せるので,$a +b$の値を解答して下さい.

解答形式

半角で解答して下さい.

積分計算の基礎

astraea 自動ジャッジ 難易度:
4月前

3

問題文

$\alpha$が$\tan\alpha= \frac{1}{\sqrt{2}}$($0<\alpha< \frac{π}{2}$)を満たす定数であるとき、定積分$ \frac{1}{π}\int_{\alpha}^{\frac{π}{4}} \frac{\tan^{3}θ+\tanθ}{\tan^{4}θ-\tan^{2}θ+1}dθ $の値を求めよ。

解答形式

分母を有理化すると自然数$a,b$を用いて$ \frac{\sqrt{a}}{b}$と表されるので、$a+b$の値を半角入力の数字のみで答えてください。

素因数分解

sembri 自動ジャッジ 難易度:
4月前

18

63999271を素因数分解した時に出てくる素因数全ての和を求めなさい。

例:35の時
 5+7=12と解答。

くそなぞなぞπ

yu23578 自動ジャッジ 難易度:
4月前

3

問題文

πの翻訳ってなーんだ?

解答形式

カタカナで解答してください

Sukosi Kantanna Geometry

Germanium32 自動ジャッジ 難易度:
4月前

29

問題文

三角形$ABC$の内心を$I$ , 外心を$O$とします。
$AI=5$ , $AO=6$ , $AB+AC:BC=5:2$が成り立っている時、$cos\angle OAI$の値を求めてください。

解答形式

求める値は互いに素な正整数$a,b$を用いて$\frac{a}{b}$と表せられるので、$a+b$の値を解答してください。

Penguin Refrection

GaLLium31 自動ジャッジ 難易度:
4月前

43

問題文

正三角形 $ABC$ の内部を以下のように歩く移動するペンギンがいる.

・ 常に直進するが,辺(頂点を除く)にぶつかった場合は,辺に対して今移動してきた直線と対称な直線へ方向転換する.頂点についた場合,その時点で歩行をやめる.

また,$0\leq p \leq 1$を満たす実数 $p$ に対して,$f(p)$を以下のように定める.

・$f(p)$は,$AC$ を $p:1-p$ に内分する点を $D$ とし,このペンギンがはじめ $B$ にいて、$D$ に向かって直進したときの,ペンギンの歩行が止まるまでに辺(頂点を除く)にぶつかった回数

正整数 $n$ に対して,$f(p)=n$ を満たす $p$ の総和が $9$ であったとき,$n$ としてありうる値の総積を求めてください.

解答形式

非負整数を半角英数字で解答してください.

Lifedays

GaLLium31 自動ジャッジ 難易度:
4月前

55

問題文

$ \pi$ ナポゥくんの生まれた日からの日数を $N$ とします.
$ \pi$ ナポゥくんは既に $3$ 歳の誕生日を迎えていますが,$28$ 歳の誕生日は迎えていません.
$N$ の各桁の総和が $22$ であるとき、$N$ として考えられる正整数はいくつありますか.

解答形式

半角英数字で解答してください.

Prime Prime

Hapican_ 自動ジャッジ 難易度:
4月前

96

問題文

$0$ から $9$ まで書かれたカードがそれぞれ $1$ 枚ずつ $10$ 枚あります。これらを $1$ 列に並べ替えてからいくつかの部分に区切ると、それぞれの部分を $10$ 進数で読んだ数はすべて素数になりました。このとき、できた素数の総和としてありうる最小の値を求めてください。ただし、それぞれの部分の最初のカードに書かれた数は $0$ でないものとします。

解答形式

半角数字で答えてください。

Sum of index

Germanium32 自動ジャッジ 難易度:
4月前

33

問題文

$n$を素因数分解したときの2の指数を$v_{2}(n)$と表します。
この時、$$v_2\left( \prod_{k=1}^{2025} (5^k - 1) \right)$$の値を求めてください。

解答形式

半角数字で入力してください。