全問題一覧

カテゴリ
以上
以下

反射2

piroshiki 自動ジャッジ 難易度:
4月前

0

問題文

一辺が$1$の正方形$ABCD$の頂点$A$から、動点$P$を$0 \leqq \angle\mathrm{DAE} \leqq π/2$となる辺$BC,CD$上の点$E$へ向かって直進させることを考える。いずれかの辺に触れたときは入射角と反射角が等しくなるように反射させ、頂点に触れたときは入射角を$π/2$として考える。
このとき点$P$が$2$進んだ後の点の軌跡で囲まれた領域の面積$S$を求めよ。

解答形式

$S$は$a/b$の形で表されるため、$b$を有理化した既約分数で回答すること。
$a=2√2-1,b=√2$の場合は、「$4-√2/2$」と回答する。

sEigEn sign

piroshiki 自動ジャッジ 難易度:
4月前

15

問題文

$\lim\limits_{n\to\infty} n\sin\frac{2π}{n} = mπ$ である。
$m$の値を求めよ。

解答形式

$m$は2つの実数$a,b$を使って $\frac{a}{b}$と表せる。
$m$を分母が有理化された既約分数の形にした時の$a+b$を解答すること。

暁山瑞希 誕生日

shakayami 自動ジャッジ 難易度:
4月前

8

三角形 $ABC$ について, 内心を $I$ , $A$ に関する傍心を $I_A$ , $\angle A$ の二等分線と $BC$ の交点を $D$ , 三角形 $ABC$ の外接円上の点であって, 点 $A$ を含まない方の弧 $BC$ の中点を $M$ とします.

$AM=27,MI_A=8$ のとき, $ID$ の長さを求めてください. ただし, 答えは有理数となるため, 既約分数 $a/b$ と書いたときの $a+b$ を答えてください.

糞問

kikutaku 採点者ジャッジ 難易度:
4月前

0

問題文

2022^2022を10で割った余り。

解答形式

どうやってといたかもかいてね。
ひらがなでいいよ。
これはさんすうだからね。

幾何

katsuo_temple 自動ジャッジ 難易度:
4月前

9

問題文

三角形$ABC$において,$A,B,C$から対辺に下ろした垂線の足をそれぞれ$D,E,F$とし,垂心を$H$とします.三角形$DEF$の外接円と三角形$HBC$の外接円の交点を$P,Q$とし,$EF$の中点を$M$とします.直線$HM$と直線$PQ$の交点を$R$とすると,$DR$は$AB$の中点を通り,$BC$の中点を$N$とすると,$$ND=2 CE=5$$が成立しました.このとき,$AB$の長さの二乗は互いに素な正整数$a,b$を用いて$\dfrac{a}{b}$と表せるので,$a +b$の値を解答して下さい.

解答形式

半角で解答して下さい.

積分計算の基礎

astraea 自動ジャッジ 難易度:
4月前

3

問題文

$\alpha$が$\tan\alpha= \frac{1}{\sqrt{2}}$($0<\alpha< \frac{π}{2}$)を満たす定数であるとき、定積分$ \frac{1}{π}\int_{\alpha}^{\frac{π}{4}} \frac{\tan^{3}θ+\tanθ}{\tan^{4}θ-\tan^{2}θ+1}dθ $の値を求めよ。

解答形式

分母を有理化すると自然数$a,b$を用いて$ \frac{\sqrt{a}}{b}$と表されるので、$a+b$の値を半角入力の数字のみで答えてください。

素因数分解

sembri 自動ジャッジ 難易度:
4月前

21

63999271を素因数分解した時に出てくる素因数全ての和を求めなさい。

例:35の時
 5+7=12と解答。

くそなぞなぞπ

yu23578 自動ジャッジ 難易度:
4月前

3

問題文

πの翻訳ってなーんだ?

解答形式

カタカナで解答してください

Lifedays

GaLLium31 自動ジャッジ 難易度:
4月前

55

問題文

$ \pi$ ナポゥくんの生まれた日からの日数を $N$ とします.
$ \pi$ ナポゥくんは既に $3$ 歳の誕生日を迎えていますが,$28$ 歳の誕生日は迎えていません.
$N$ の各桁の総和が $22$ であるとき、$N$ として考えられる正整数はいくつありますか.

解答形式

半角英数字で解答してください.

Prime Prime

Hapican_ 自動ジャッジ 難易度:
4月前

96

問題文

$0$ から $9$ まで書かれたカードがそれぞれ $1$ 枚ずつ $10$ 枚あります。これらを $1$ 列に並べ替えてからいくつかの部分に区切ると、それぞれの部分を $10$ 進数で読んだ数はすべて素数になりました。このとき、できた素数の総和としてありうる最小の値を求めてください。ただし、それぞれの部分の最初のカードに書かれた数は $0$ でないものとします。

解答形式

半角数字で答えてください。

Prime Prime Prime (Easy)

yu23578 自動ジャッジ 難易度:
4月前

68

問題文

この問題は、Prime Prime Prime (Hard)と一部分一致しているため、相違点を赤色で強調しています。

$n$ 桁の素数であって,すべての $i,j$ $ (1 \le i $  $ j \le n)$ において, $i$ 桁目から $j$ 桁目までが素数である数のうち,最大のものを答えてください.
例えば, $23$ は $2(i=1,j=1),3(i=2,j=2),$$23(i=1,j=2)$ が全て素数なので条件を満たします.

解答形式

半角数字で解答してください.

Prime Prime Prime (Hard)

yu23578 自動ジャッジ 難易度:
4月前

24

問題文

この問題は、Prime Prime Prime (Easy)と一部分一致しているため、相違点を赤色で強調しています。

また、必要とされる素数表の大きさがOMCに乗っているものよりも大きいため、この問題に限り、外部の素数表の閲覧を許可します。

$n$ 桁の素数であって,すべての $i,j$ $ (1 \le i $  $ j \le n)$ において, $i$ 桁目から $j$ 桁目までが素数である数のうち,最大のものを答えてください.
例えば, $23$ は $23(i=1,j=2)$ が全て素数なので条件を満たします.

解答形式

半角数字で解答してください.