同一平面上に $2$ 円 $\omega_{1},\omega_{2}$ があり、相異なる$2$ 点 $A,B$ で交わっています。$A$ における $\omega_{2}$ の接線を $l_{A}$ 、$B$ における $\omega_{1}$ の接線を$l_{B}$ とし、$l_{A}$ と $l_{B}$ の交点を $X$ とします。また、$l_{A}$ と $\omega_{1}$ の交点のうち、$A$ でない点を $C$、$l_{B}$ と $\omega_{2}$の交点のうち、$B$ でない点を $D$ とすると、$A,C,X$ はこの順に同一直線上にあり、以下が成立しました。
$$XB=9 BC=2 AD=5$$
このとき、線分 $BD$ の長さを求めてください。
なお、$\omega_{2}$ の半径の方が $\omega_{1}$ の半径より大きいことが保証されます。
$BD$ の長さは互いに素な整数 $a,b$ を用いて $\dfrac{a}{b}$ と表されるので、$a+b$ を解答してください。
相異なる $1$ 以上 $9$ 以下の整数の組 ($A,E,M,S,T,U,Y$) が以下の覆面算を満たしています
$$\begin{array}{rr}
& MATU \\
+ & YAMA \\
\hline
& EAST
\end{array}$$
このとき、$EAST$ としてありうる値を見つけてください。
$EAST$ としてありうる値が$3$つ存在するので、それらの総和を解答してください。
$AB=BC$で、面積が$2025$であるような二等辺三角形$ABC$がある。$AB(=BC)$の最小値を求めよ。
半角数字で$AB^2(=BC^2)$の値を入力してください。
次の文章の$\fbox{1},\dotsc,\fbox{6}$に当てはまる数を求めよ。
$$
a_{n} = \int_{1}^{e^{0.1}}(\log{x})^{n}dx \qquad (n=0,1,2,\dotsc)
$$とする。部分積分法を用いることで,漸化式
$$
a_{n} = (\fbox{1})^{n}\cdot e^{\fbox{2}} - na_{n-1} \qquad (n\geq1)
$$を得る。$a_{3}$は,有理数$\fbox{3},\fbox{4}$を用いて
$$
a_{3} = \fbox{3}e^{\fbox{2}}+\fbox{4}
$$と表せる。$1\leq x\leq e^{0.1}$のとき$0\leq(\log{x})^{n}\leq0.1^{n}$より$0\leq a_{n}\leq(e^{0.1}-1)\cdot0.1^{n}$である。$n=3$に対してこの不等式を用いることにより$e^{-0.1}$を小数点第4位まで求めることができる。$e^{-0.1}$の小数点第5位以下を切り捨てた小数点第4位までの値は$\fbox{5}$である。
また,$\displaystyle b_{n}=\frac{(-1)^{n}e^{-0.1}}{n!}a_{n}$とすることで$a_{n},b_{n}$の一般項は容易に求められる。
$$
0 \leq |b_{n}| = \frac{e^{-0.1}a_{n}}{n!} < \frac{1-e^{-0.1}}{10^{n}\cdot n!}
$$より,はさみうちの原理から$\displaystyle\lim_{n\to\infty}|b_{n}| = 0$,つまり
$$
\sum_{n=0}^{\infty}\frac{(-0.1)^{n}}{n!} = e^{\fbox{6}}
$$が求められる。
$\mathrm{i}=1,\dotsc,6$に対し,$\fbox{i}$に当てはまる数を$\mathrm{i}$行目に半角で答えてください。例えば,$\fbox{1},\dotsc,\fbox{6}$にそれぞれ$1.2,3.45,-6,7.89,1.2356,-2.3$が当てはまるときは
1.2
3.45
-6
7.89
1.2356
-2.3
と解答してください。
半径が$14$の円$Ω$に内接し, $AB>AC$を満たす鋭角三角形$ABC$について, 内心を$I$, $A$傍心を$J$とする. 辺$AJ$の垂直二等分線と$Ω$の交点の内, 点$C$側にあるものを$D$, $B$側にあるものを$E$とし, 三角形$JBC$の外接円と三角形$JDE$の外接円の交点を$X(\neq J)$としたところ, 以下が成り立った.
$$
CX:CD=8:3, AI=10
$$
辺$BC$と辺$DE$の交点を$F$としたときの線分$XF$の長さの二乗を求めてください.
辺$AB$と辺$BC$と辺$CD$の長さが等しい凸四角形$ABCD$について, 辺$BC$と辺$AD$の中点をそれぞれ$M$, $N$としたところ, 以下が成り立ちました.
$$
\angle BAD=75°, \angle CDA=45°, MN=3
$$
このとき, 四角形$ABCD$の面積は正整数$a, b$を用いて$a+\sqrt{b}$ と表すことができるので, $a+b$ の値を求めてください.
正三角形$ABC, DEF$について, 三点$A, F, E$がこの順に同一直線上に並んでいます. また, 線分$AD$と線分$BE$の交点が存在したのでこれを$X$とすると三点$F, C, X$はこの順に同一直線上に並びました. 直線$BC$と直線$AE$の交点を$Y$としたとき, 以下が成立しました.
$$
\angle CAE=\angle BEA, AD=AY, DX=1
$$
このとき, 線分$AD$の長さの値の最小多項式を$f$とします. $f(5)$の値を求めてください.
$m$を根にもつ有理数係数多項式のうち, 次数が最小であり, かつ最高次の係数が$1$であるものを(このようなものは一意に存在します), $m$の最小多項式とよびます.
鋭角三角形$ABC$について, 外接円を$Ω$, 垂心を$H$, 辺$BC$の中点を$M$, 点$H$から直線$AM$に下ろした垂線の足を$K$とします. 直線$BH, CH$と$Ω$の交点をそれぞれ$E(\neq B), F(\neq C)$とし, 線分$EF$の中点を$N$とします. さらに, 辺$AC$上(端点を除く)に点$P$をとると以下が成立しました.
$$
\triangle FNP \backsim \triangle AMC, \angle PFA=\angle BAM, BK=5
$$
このとき, 線分$PE$の長さの二乗としてありうる値の総和を求めてください.
正方形$ABCD$について, 直線$BC$上に点$E$を点$B, C$と重ならないようにとり, 正方形$AEFG$を正方形$ABCD$と向きが同じになるようにとります. 線分$CF$の長さが$8$のとき, 正方形$ABCD$と正方形$AEFG$の面積の差として考えられる値の総和を求めてください.
$AB>AC$を満たす鋭角三角形$ABC$の外接円を$Ω$, 辺$BC$の中点を$M$とします. 点$B,C$から対辺に下した垂線の足をそれぞれ$E, F$とし, 直線$EF$と$Ω$の交点を$P, Q$とします. ただし, 四点$P, E, F, Q$はこの順に並ぶものとします. 円$MEF$と直線$MQ$の交点を$L(\neq M)$としたところ直線$AL$と直線$PM$が$Ω$上で交わりました.
$$
QL=PM=20
$$
が成立するとき, 線分$AP$の長さを二乗した値を求めてください.