全問題一覧

カテゴリ
以上
以下

TMC001(E)

hya_math 自動ジャッジ 難易度:
4日前

2

半径1の円$\omega$に内接する凸六角形$A_{1}A_{2}A_{3}A_{4}A_{5}A_{6}$について,線分$A_{1}A_{4},A_{2}A_{5},A_{3}A_{6}$はそれぞれ$\omega$の直径です.直線$A_{1}A_{2}$と直線$A_{3}A_{4}$の交点を$B_{1}$直線$A_{3}A_{4}$と直線$A_{5}A_{6}$の交点を$B_{2}$直線$A_{5}A_{6}$と直線$A_{1}A_{2}$の交点を$B_{3}$とすると以下が成立しました.
$$
\frac {A_{1}A_{2}}{A_{1}A_{5}}+\frac {A_{2}A_{3}}{A_{2}A_{6}}+\frac {A_{3}A_{4}}{A_{3}A_{1}}=3,三角形B_{1}A_{2}A_{3},B_{2}A_{4}A_{5},B_{3}A_{6}A_{1}の面積の和は\frac {24}{5}.
$$
このとき,六角形$A_{1}A_{2}A_{3}A_{4}A_{5}A_{6}$の面積は互いに素な正の整数$a,b$を用いて$\frac ab$と表せるので$a+b$を回答してください.

TMC001(A)

hya_math 自動ジャッジ 難易度:
4日前

20

$99989796…090807060504030201$を$97$で割った余りを求めてください.

TMC001(G)

hya_math 自動ジャッジ 難易度:
4日前

11

鋭角三角形$ABC$について,その外接円を$\Gamma$,外心を$O$,垂心を$H$,点$A$から辺$BC$に下した垂線の足を$D$とします.さらに,直線$AO$と辺$BC$の交点を$E$,直線$AO$と$\Gamma$の交点を$F$とすると以下が成立しました.
$$
OH=10, DH=12, EF=13
$$
このとき$\Gamma$の面積としてありうるものの総和は互いに素な正の整数$a,b$を用いて$\frac ab\pi$と表せるので$a+b$を回答してください.

TMC001(B)

hya_math 自動ジャッジ 難易度:
4日前

12

関数$A(n),B(n)$を
$$
A(n)=(1\le x \le nを満たす1001と互いに素な整数xの個数)\\
B(n)=(n\le x \le 1001を満たす1001と互いに素な整数xの個数)
$$
と定めるとき,次の値を求めてください.
$$
\sum_{n=1}^{1000}\quad \frac{A(n)^2}{A(n)-B(n)}
$$

キカ⭐️キカ⭐️

mim 採点者ジャッジ 難易度:
7日前

0

問題文

ある鋭角三角形ABCにおいてAから対辺への
垂線の足をD,ADの中点をM,△ABCの内心を
IとするとAC//MIである。
BD=1,CD=6のとき△ABCの面積を求めよ。

解答形式

ある程度シンプルな形で答えよ。

松笠 ドングリ

mim 採点者ジャッジ 難易度:
7日前

0

問題

任意の自然数nにおいて、$A(n+1)=\frac{A(n)^2+A(n+2)^2}{A(n)+A(n+2)},A(n)>0$
が成り立つ数列{A(n)}をA(2),A(1)の値に
よって定める。
この数列はA(2)>A(1)>0を満たす
任意の(A(1),A(2))組に対して一意に定まる。
$$\lim_{n\to \infty}A(n)を求めよ。
$$(但し、数列{X(n)}において常にX(n)>X(n+1)>x
ならX(n)が収束することを用いて良い)

解答形式

収束するならその値を、
振動するときは'振動する'と、
無限大に発散する時は∞と答えよ。

軌跡の長さ

mim 自動ジャッジ 難易度:
9日前

2

問題文

xy平面上に固定された円板C:x^2+y^2=1と、
CにA(1,0)で固定された長さ2π、もう一方の端点をPとする糸がある。
始めにP=Aとなるように糸を時計回りでCに巻き付ける。
ここで、Cと合同な円板C'をAで外接させ、
C’上の接点とPを接着する。
C'がCに接しながら糸を弛ませずに反時計回りに
Cを一周する。
(但し、始めからしばらくはC'に糸は巻きつかない)
Pの軌跡の長さを求めよ。

解答形式

Xπ+Y(X,Yは有理数)の形になるので
X+Yを最もシンプルな形で答えよ。
(但し、X,Yは正の数とは限らない)
不正解となった場合、Xπ+Yもしくは簡単な方針を質問欄に入れてくれると助かります

難しい求積

mim 自動ジャッジ 難易度:
10日前

0

問題

ある三角形OABにおいて
OP=sOA、OQ=tOBとなるように
P,Qを半直線OA,OB上におく(0<s,t<1)
そして、点Rを次のように定める
・Rは四角形ABQPの内部に存在し、
  |O-AB|:|O-PQ|=|R-AB|:|R-PQ|を満たす
(但し、|X-YZ|は点Xから直線YZへの距離とする)
このとき、s,tがs+t=1を満たしながら変動する。
Rの存在領域の面積を求めよ!!

解答形式

〈(10D+E)√F−Gπ〉|△OAB|÷9√3と表せるので(D,E,F,Gは数字)、四桁の数DEFGを答えよ

F

nmoon 自動ジャッジ 難易度:
12日前

7

問題文

$AB \lt AC$ を満たす鋭角三角形 $ABC$ の垂心を $H$,とする.直線 $BH, CH$ と三角形 $ABC$ の外接円との交点をそれぞれ $E (\not = B) , F (\not = C)$ とし,辺 $AB , AC$ と 線分 $EF$ との交点をそれぞれ $P , Q$ とする.直線 $AC$ に関して $P$ と対称な点を $R$,直線 $AB$ に関して $Q$ と対称な点を $S$ とし,三角形 $RSH$ の外心を $O$ とすると,以下が成立した.

$$ AH = 3 , BC = 4 , AO = 1$$

このとき,$AB$ の長さを求めてください.

解答形式

互いに素な正整数 $b , c$ および正整数 $a$ を用いて $\dfrac{\sqrt{a} - b}{c}$ と表されるので,$a + b + c$ を答えてください.

E

nmoon 自動ジャッジ 難易度:
12日前

21

問題文

横一列に並んだ $14$ 個のオセロの石があります.そして,以下の操作を何度か行い,黒面を向いた石の個数をできるだけ少なくします.

  • 連続して並んだ $4$ 個の石を選んで,左から $1,2,4$ 個目の石を全て裏返す.

全ての操作の終了後に黒面を向く石の個数を スコア とします.最初の石の配色は $2^{14}$ 通りありますが,これら全ての場合においてスコアの総和を求めてください.
 但し,オセロの石は,片方が黒面で,もう片方が白面であるとする.

解答形式

正整数で答えてください.

A

nmoon 自動ジャッジ 難易度:
12日前

40

問題文

正三角形 $ABC$ の内部に点 $P$ をとったところ,以下が成立しました.

$$AP = 10 , BP = 14 , CP = 16$$

このとき,正三角形 $ABC$ の面積を求めて下さい.

解答形式

求める値を $2$ 乗した値は正整数となるので,その値を求めて下さい.

B

nmoon 自動ジャッジ 難易度:
12日前

52

問題文

以下の式を満たす正の整数の組 $(m,n)$ 全てについて,$m + n$ の総和を求めてください.

$$(mn - 1)^2 + (m + n)^2 = 650$$

解答形式

正整数で答えてください.