これは公開リストです。

京大作サーマスガチャ2025

writer: Kta / ジャンル: 数学 / 難易度:


第 1 問 京大作サーマスガチャ2025 - R18改 writer : Kta

問題文

三角形 $ABC$ について,線分 $BC$ の中点を $M$ とし,$\angle ABC$ の二等分線と直線 $AM$ との交点を $D$ とすると,以下が成立した.
$$BC=4,\angle ADB=\angle AMC=3\angle BAM$$このとき,線分 $AC$ の長さの二乗は正整数 $a,b$ を用いて $a+\sqrt b$ と表せるので,$a+b$ を解答せよ.

解答形式

半角数字で入力してください。

第 2 問 京大作サーマスガチャ2025 - SR18 writer : Kta

問題文

任意の正整数 $m$ に対して $n^m-n$ が $10!$ の倍数であるような $10!$ 以下の正整数 $n$ の個数を求めよ.

解答形式

半角数字で入力してください。

第 3 問 京大作サーマスガチャ2025 - SR22 writer : Kta

問題文

$n^2+78n-79$ を $100$ で割った余りが平方数とならないような最小の正整数 $n$ を求めよ.

解答形式

半角数字で入力してください(数字のみ)。

第 4 問 京大作サーマスガチャ2025 - LR4 writer : Kta

問題文

三角形 $ABC$ について,その垂心を $H$ ,外心を $O$ とする.直線 $BH$ と直線 $AC$ との交点を $E$ ,直線 $CH$ と直線 $AB$ との交点を $F$ とすると,$3$ 点 $E,O,F$ は同一直線上にあった.$AH=8,AO=6$ のとき,四角形 $EFBC$ の面積の二乗の値を求めよ.

解答形式

半角数字で入力してください。

第 5 問 京大作サーマスガチャ2025 UR9 writer : igma

問題文

$1$ 以上 $10^7$ 以下の $11$ の倍数全てに対して,それぞれの各位の和の総和を求めてください.

第 6 問 京大作サーマスガチャ2025 LR10 writer : igma

問題文

$2024!$ 以上の正整数 $n$ のうち,$\dfrac{2025!}{n}$ の小数部分が $\dfrac{2025!-67}{2025!}$ より大きいものの個数を求めてください.