$$ x+ \frac{1}{x} =1 $$ のとき以下の値を求めよ $$ \sum_{k=1}^{10^m}(x^{k}+\frac{1}{x^{k}}) \quad $$ ただしmは自然数である。
半角数字で答えてください。 また、複数個の値を取りうる場合は値の小さい順に改行して入力してください。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
$x,y$を整数とします。次の式を満たす$x,y$の組$(x,y)$を全て求めてください。$$x^2y^2+3x^2y-12xy^2-5x^2-36xy+25y^2+60x+78y=123$$
$x$と$y$の積$xy$としてあり得るものの総和を半角で解答してください。
$$ a_1=b_1=2025, \begin{cases} a_{n+1}=a_n-2n+b_{2028}\\ b_{n+1}=b_n+4n+a_{2028}\end{cases} $$
について、$a_n$の一般項を $$a_n=α−(n−1)(n−β)$$と表したとき、$β$の値を求めよ
$$ x+ \frac{1}{x} =-1 $$ のとき以下の値を求めよ $$ \sum_{k=1}^{m^{3}-7m+9}(x^{k}+\frac{1}{x^{k}}) \quad $$ ただしmは自然数である。
$x$ についての方程式 $xe^{2\sqrt{x}}=9(\log{3})^2$ の実数解を求めよ。
解をすべて答えてください。値の小さい順に1行目から入力してください。 なお,解答にあたって,特殊な数式は次のように入力してください。
対数:$\log_n{m}$ = \log_{n}{m}, $\log{m}$ = \log{m} 指数($\sqrt{m} = m^{\frac{1}{2}}$もすべて指数として入力してください):$n^{m}$ = n^{m} 分数:$\frac{a}{b}$ = \frac{a}{b}
正整数 $n$ を与えたところ,以下の等式をみたす実数 $x$ がちょうど $4$ つ存在しました. $$x^2 - 18\sqrt{n}|x| - 30n + 1110 = 0$$$n$ のとり得る値の総和を求めて下さい.
半角英数にし,答えとなる正整数値を入力し解答して下さい.
$n=1,2,3...、k=0,1,2...n-1$とします。
また、不等式$$a_1<a_2<...<a_n≦n$$
を$A_0$とし、$A_0$の$n-1$個の$<$のうち$k$個が$≦$に置き換わったものの一つを$A_k$とします。
ここで、$A_k$をみたす正整数$(a_1,a_2...a_n)$の組の総数を$N_k$とするとき、$N_0+N_1+...+N_{n-1}$を$n$を用いて表してください。
$C$(コンビネーション記号)を用いて、$aCb$の形で表すことができるので、$a,b$の間に半角スペースを入力して、$a$ $b$を半角英数字で入力してください。 追記:ただし、$b$は$2$つの値が考えられるので、小さい方を入力してください。 例)$nC2→n$ $2,2nCn→2n$ $n$
※初めの解答では指定がなく間違い判定になった方がいたので修正させていただきました、、
正の実数 $x,y,z$ が, $$ (6x+15y+8z)xyz=5 $$ を満たす時, $(5x+5y+4z)^2$ の最小値を求めてください.
半角数字で入力してください
$\sqrt{N+\sqrt{8999\cdot9001}}$が実数となり二重根号が外れるとき、 整数$N$の値を全て求めてください。 ただし$9001$,$8999$は素数であることが保証されます。
また、二重根号が外れるとは、 その値を正の有理数$a,b\cdots$を用いて$\sqrt{a}+\sqrt{b}+\cdots$と表せることをいいます。
$N$として考えうる全ての値の総和を求めてください。
100をe進数で表記すると何桁になるか。(整数部分のみ)
半角数字+「桁」という文字(例:1桁)
$\frac{1}{\sqrt{1}+\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{5}+\sqrt{6}+\sqrt{8}+\sqrt{10}}$ を有理化し、その分母を答えよ。
既約分数にしてその分母を整数値でお答えください。
実数に対して定義され実数値をとる関数 $f$ であって,任意の実数 $x,y$ に対して
$$f(x)f(y)=f(yf(x)+1)-2x$$
を満たすものが存在します.このような $f$ について,$f(3939)$ の値としてありうるものの総和を求めてください.
答えは非負整数になるので,半角数字で解答してください。
$A,B$を全ての要素が$2$以上$2024$以下の自然数からなる集合で$A$と$B$の和集合の要素数が$2023$個であるものとします。$A,B$から要素を自由に$1$つずつ選ぶとき、どのように要素を選んでもその$2$つの数の最大公約数が$1$になるような$A,B$の組$(A,B)$の個数を求めてください。ただし、必要ならインターネットにある素数表を検索して用いても構いません。また、空集合も条件を満たすものとしてください。
問題を少し変更いたしました。
答えは正の整数$n$を用いて$2^n$と表せますから$n$を半角で1行目に入力してください。