対称式の総和①

nanohana 自動ジャッジ 難易度: 数学 > 高校数学
2024年5月16日6:42 正解数: 7 / 解答数: 9 (正答率: 77.8%) ギブアップ数: 1
数列 総和 対称式 シグマ

問題文

$$
x+ \frac{1}{x} =-1
$$
のとき以下の値を求めよ
$$
\sum_{k=1}^{m^{3}-7m+9}(x^{k}+\frac{1}{x^{k}}) \quad
$$
ただしmは自然数である。


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

対称式の総和②

nanohana 自動ジャッジ 難易度:
7月前

6

問題文

$$
x+ \frac{1}{x} =1
$$
のとき以下の値を求めよ
$$
\sum_{k=1}^{10^m}(x^{k}+\frac{1}{x^{k}}) \quad
$$
ただしmは自然数である。

回答形式

半角数字で答えてください。
また、複数個の値を取りうる場合は値の小さい順に改行して入力してください。

8月前

5

問題文

四角形$ABCD$があります.線分$AC$上に点$P$を,線分$BP$上に点$Q$を,線分$DP$上に点$R$を取ります.直線$AQ$と線分$BC$,直線$CQ$と線分$AB$,直線$AR$と線分$CD$,直線$CR$と線分$AD$の交点をそれぞれ$S,T,U,V$とします.
$$\triangle BSA=(四角形BSPT)+8=\triangle BCT+12
\\\\\triangle AUD =30,\triangle CDV=25$$
が成り立つとき四角形$DVPU$の面積を求めてください.

解答形式

求める値は互いに素な自然数$p,q$を使って$\cfrac{q}{p}$と表されるので$p+q$の値を答えてください.

(変更 2024/6/27 ヒントを変えました.解説を未正解者も見れるように変更しました.)

集合の組の個数

noname 自動ジャッジ 難易度:
8月前

18

問題文

$A,B$を全ての要素が$2$以上$2024$以下の自然数からなる集合で$A$と$B$の和集合の要素数が$2023$個であるものとします。$A,B$から要素を自由に$1$つずつ選ぶとき、どのように要素を選んでもその$2$つの数の最大公約数が$1$になるような$A,B$の組$(A,B)$の個数を求めてください。ただし、必要ならインターネットにある素数表を検索して用いても構いません。また、空集合も条件を満たすものとしてください。

問題を少し変更いたしました。

解答形式

答えは正の整数$n$を用いて$2^n$と表せますから$n$を半角で1行目に入力してください。

ただの連立方程式

sha256 自動ジャッジ 難易度:
10月前

8

問題文

次の$x,y$についての連立方程式を実数の範囲で解いてください。

$$
\begin{cases} \Large\frac{9}{x^2-xy+y^2}+\frac{7}{x^2+xy+y^2}=\frac{x}{256} \\ \Large \frac{9}{x^2-xy+y^2}-\frac{7}{x^2+xy+y^2}=\frac{y}{256} \end{cases}
$$

解答形式

解となる$(x,y)$の組全てについて$x+y$を足し合わせたものを半角英数字で入力してください。

平方数

sdzzz 自動ジャッジ 難易度:
8月前

27

問題文

$n^4+4n^2-38n+69$ が平方数となるような正整数 $n$ の総和を求めてください.

解答形式

半角数字で入力してください.

N3

orangekid 自動ジャッジ 難易度:
7月前

12

問題文

整数$x, y, z$は$0<x<28,0<y, 0\leq z<20$ と $37x-13y=2z$ を共に満たします。このような整数の組$(x,y,z)$はいくつあるでしょう?

解答形式

半角数字で入力してください。

2025年

SU-JACK 自動ジャッジ 難易度:
6月前

5

問題文

$$
a_1=b_1=2025,
\begin{cases} a_{n+1}=a_n-2n+b_{2028}\\ b_{n+1}=b_n+4n+a_{2028}\end{cases}
$$

について、$a_n$の一般項を
$$a_n=α−(n−1)(n−β)$$と表したとき、$β$の値を求めよ

除夜コン2023予選A2

shoko_math 自動ジャッジ 難易度:
12月前

5

問題文

実数 $a,b,c,d$ が $\dfrac{a^2+b^2+2bc+2ca}{c^2+2ab}=\dfrac{b^2+c^2+2ca+2ab}{a^2+2bc}=\dfrac{c^2+a^2+2ab+2bc}{b^2+2ca}=d$ を満たすとき,$d$ の値として考えられるものの総和を求めてください.

解答形式

半角数字で解答してください.

ちょっと長い方程式

noname 自動ジャッジ 難易度:
9月前

5

少し問題を変更いたしました。ご迷惑をおかけしてしまい申し訳ございません。

問題文

$x,y$を整数とします。次の式を満たす$x,y$の組$(x,y)$を全て求めてください。$$x^2y^2+3x^2y-12xy^2-5x^2-36xy+25y^2+60x+78y=123$$

解答形式

$x$と$y$の積$xy$としてあり得るものの総和を半角で解答してください。

韓国産高校数学問題 - 1

nflight11 自動ジャッジ 難易度:
5月前

7

問題文

すべての正整数 $n$ に対して $a_{n+1}=a_{n}+a_{n+2}$ を満たす数列 $\{a_n\}$ に対して、次の式が成立する。

$$\sum_{n=1}^\infty \frac{a_n}{2^n}=1998, \sum_{n=1}^\infty \frac{a_{3n}}{3^n}=1106$$

この時、$|a_{1998}a_{1106}|$を求めよ。

解答形式

答えをそのまま入力しなさい。

整数

you2024 自動ジャッジ 難易度:
3月前

4

nを素数、o,kを正の整数とする。

2ⁿ+5⁰=k²

をみたすn,o,kの組(n,o,k)をすべて求めよ。

答えとなるn,o,pの値の総和を回答してください

8月前

23

問題文

$$\sum_{k=m}^{n}k!=p$$を満たす自然数m,nと素数pの組(m,n,p)を全て求めよ。

解答形式

mが小さい順に、そして組ごとに改行して解答してください。

例えば(m,n,p)=(1,2,3)(2,3,4)(3,4,5)のときは、
1,2,3
2,3,4
3,4,5
のように入力してください