A

nmoon 自動ジャッジ 難易度: 数学
2024年11月2日19:00 正解数: 20 / 解答数: 34 (正答率: 58.8%) ギブアップ不可
この問題はコンテスト「Nyannyan Math Contest 002 (NMC002)」の問題です。

問題文

2つの正整数 $a,b$ の組のうち,最小公倍数が最大公約数の $10$ 倍となり,$a+b=154$ を満たすもの全てについて,$ab$ の総和を求めてください.

解答形式

非負整数で解答してください.


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

B

nmoon 自動ジャッジ 難易度:
2月前

29

問題文

3種類の文字 $A,B,C$ を用いて以下の条件を満たした長さが5の文字列は全部でいくつあるか.

  • $A$ の右隣にある文字は $B$ ではない.

  • $B$ の右隣にある文字は $C$ ではない.

解答形式

非負整数で解答して下さい.

PGC005 (B)

pomodor_ap 自動ジャッジ 難易度:
57日前

34

問題文

$BC=123, \angle B=90^{\circ}$ なる三角形 $ABC$ について,内心を $I$,$\angle A$ 内の傍心を $J$ とすると,四角形 $ABIC$ は三角形 $BCJ$ よりも面積が $246$ 大きくなりました.$AB$ の長さを求めてください.

PGC005 (A)

pomodor_ap 自動ジャッジ 難易度:
57日前

44

問題文

$BC=18$ かつ面積が $162$ なる三角形 $ABC$ について,重心を $G$,$G$ から $BC$ に下ろした垂線の足を $P$ とすると,三角形 $PGC$ の面積が $30$ となりました.$AC$ の長さの二乗を求めてください.

D

nmoon 自動ジャッジ 難易度:
2月前

10

問題文

4次方程式 $x^4-4x^3-21x^2-8x+4=0$ の4つの相異なる実数解を,小さいものから順に $a_{1},a_{2},a_{3},a_{4}$ とします.このとき,以下の値を求めてください:

$$\displaystyle\frac{1}{a_{1}^2-a_{1}a_{2}+a_{2}^2}+ \displaystyle\frac{1}{a_{3}^2-a_{3}a_{4}+a_{4}^2} $$

解答形式

互いに素な2つの正整数 $a,b$ を用いて $\displaystyle\frac{a}{b}$ と表されるので,$a+b$ を求めてください.

KOTAKE杯001(Q)

MrKOTAKE 自動ジャッジ 難易度:
5月前

22

問題文

$AB=15,AC=24$の鋭角三角形$ABC$があり内心を$I$,垂心を$H$とすると
$4$点$BCHI$は同じ円 $Γ$上にあった.このとき円 $Γ$の半径の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯001(R)

MrKOTAKE 自動ジャッジ 難易度:
5月前

22

問題文

外心を$O$とする三角形$ABC$があり線分$BC$上に点$D$をおくと以下が成立した.
$AD=CD,BD-CD=15,OB=24,OD=9$
このとき$AB$の長さを解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

PGC005 (C)

pomodor_ap 自動ジャッジ 難易度:
57日前

33

問題文

$AB=5, AC=7$ なる三角形 $ABC$ について,$A$ から $BC$ に下ろした垂線と円 $ABC$ の交点を $D(\neq A)$,$BC$ の中点を $M$ とします.$\angle AMD=90^{\circ}$ であるとき,$BC$ の長さの四乗を求めてください.

柏陽祭C

re.ghuS 自動ジャッジ 難易度:
3月前

35

$p, q$を素数とする.自然数$N=p^6-q^6$と表され、相違なる素因数をただ3つもつとき,$N$の値を求めよ.

KOTAKE杯001(T)

MrKOTAKE 自動ジャッジ 難易度:
5月前

37

問題文

三角形$ABC$の重心$G$に関して$A$と対称な点を$D$とすると$4$点$ABDC$は共円であり,
$AB=6,BD=4$であった.このとき$AD$の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯001(P)

MrKOTAKE 自動ジャッジ 難易度:
5月前

46

問題文

$AB=36,AC=24$の三角形$ABC$があり線分$AB$を$1:2$に内分する点$D$,線分$AC$を$3:1$に内分する点$E$をとり$BE$と$CD$の交点を$P$とすると$AP=14$であった.
このとき$BC$の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

F

kusu394 自動ジャッジ 難易度:
52日前

32

問題文

等式
$$3kp-35p=q^2+2^p$$を満たすような素数 $p,q$ と正整数 $k$ の組 $(p,q,k)$ を考えます.$p+q+k$ として考えられる値のうち小さい方から $5$ つの総和を解答してください. 

解答形式

半角整数で入力してください.

bMC_D

bzuL 自動ジャッジ 難易度:
6月前

46

問題文

非負実数 $x,y,z$ が $x+y+z=1$ を満たすとします.
$$
x^{5001}y^{5002} + y^{5001}z^{5002} +z^{5001}x^{5002}
$$
の最大値は,互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表すことができます.$a+b$ を素数 $4999$ で割った余りを求めてください.

解答形式

半角数字で解答してください.