3種類の文字 $A,B,C$ を用いて以下の条件を満たした長さが5の文字列は全部でいくつあるか.
$A$ の右隣にある文字は $B$ ではない.
$B$ の右隣にある文字は $C$ ではない.
非負整数で解答して下さい.
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
2つの正整数 $a,b$ の組のうち,最小公倍数が最大公約数の $10$ 倍となり,$a+b=154$ を満たすもの全てについて,$ab$ の総和を求めてください.
非負整数で解答してください.
4次方程式 $x^4-4x^3-21x^2-8x+4=0$ の4つの相異なる実数解を,小さいものから順に $a_{1},a_{2},a_{3},a_{4}$ とします.このとき,以下の値を求めてください:
$$\displaystyle\frac{1}{a_{1}^2-a_{1}a_{2}+a_{2}^2}+ \displaystyle\frac{1}{a_{3}^2-a_{3}a_{4}+a_{4}^2} $$
互いに素な2つの正整数 $a,b$ を用いて $\displaystyle\frac{a}{b}$ と表されるので,$a+b$ を求めてください.
AB=15, AC=24の鋭角三角形ABCがあり内心をI, 垂心をHとすると 4点BCHIは同じ円Γ上にあった.このとき円Γの半径の長さの2乗を解答してください.
答えは正の整数値となるので, その整数値を半角で入力してください.
外心をOとする△ABCがあり線分BC上に点Dをおくと以下が成立した. AD=CD, BD-CD=15, OB=24, OD=9 このときABの長さを解答してください.
AB=36, AC=24の△ABCがあり線分ABを1:2に内分する点D, 線分ACを3:1に 内分する点EをとりBEとCDの交点をPとするとAP=14であった. このときBCの長さの2乗を解答してください.
非負実数 $x,y,z$ が $x+y+z=1$ を満たすとします. $$ x^{5001}y^{5002} + y^{5001}z^{5002} +z^{5001}x^{5002} $$ の最大値は,互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表すことができます.$a+b$ を素数 $4999$ で割った余りを求めてください.
半角数字で解答してください.
凸五角形 $ABCDE$ は以下を満たします. $$ \begin{cases} AB=BC=CD=DE \\\\ 2\angle{BAE} = \angle{CBA}\\\\ 2\angle{ECA} = \angle{AEC} = \angle{BAE} + 30^{\circ} \end{cases} $$ このとき,互いに素な正整数 $a,b$ を用いて $\angle{EDB}=\bigg(\dfrac{a}{b}\bigg)^{\circ}$と表すことができるので,$a+b$ を答えてください.
$BC=123, \angle B=90^{\circ}$ なる三角形 $ABC$ について,内心を $I$,$\angle A$ 内の傍心を $J$ とすると,四角形 $ABIC$ は三角形 $BCJ$ よりも面積が $246$ 大きくなりました.$AB$ の長さを求めてください.
△ABCの重心Gに関してAと対称な点をDとすると4点ABDCは共円であり, AB=6, BD=4であった. このときADの長さの2乗を解答してください.
1辺4の正三角形の内部に点$P$をとる. 点$P$の各辺からの距離をそれぞれ$a, b, c$と置いたとき, $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{11\sqrt{3}}{6}, \frac{1}{a}\times\frac{1}{b}\times\frac{1}{c}=\frac{\sqrt{3}}{2}$が成り立ったから$a^2+b^2+c^2$ の値を求めよ.ただし,答えは互いに素な自然数$a, b$を用いて$\frac{a}{b}$と表されるので,$a+b$の値を答えよ.
長方形$ABCD$がある.$BC$上に点$E$を,$CD$上に点$F$を以下の式が成り立つように取る.\ $\angle BAE=\angle CEF$,$\angle AFD=2\angle CEF$,$DF=2$,$CF=\sqrt{5}-2$が成り立つとき,$\angle DAF$の値を度数法で求めよ.
$a$を$b$で割った余りを$f(a, b)$とする. このとき,$\sum\limits _{n=1} ^{10000} f(n!+1, n+1)$の値を求めよ.