アクセスがしづらい状況について (2025年1月23日14:22)
現在、ポロロッカにアクセスがしづらい状況が発生しております。 サーバー強化など応急処置は完了しておりますが、本格的な調査は2月ごろとなる見込みです。 ご迷惑をおかけし、大変申し訳ございません。

積分方程式

nanohana 自動ジャッジ 難易度: 数学 > 高校数学
2024年10月30日11:37 正解数: 3 / 解答数: 3 (正答率: 100%) ギブアップ不可
積分 積分方程式

全 3 件

回答日時 問題 解答者 結果
2024年11月7日22:04 積分方程式 iwashi
正解
2024年11月1日7:56 積分方程式 noname
正解
2024年10月31日14:29 積分方程式 tima_C
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

1の位

soka 自動ジャッジ 難易度:
7月前

3

問題

$a=2+\sqrt3$とする.
このとき
$$a^{2025}+a^{2023}+...+a^3+a$$の$1$の位を求めよ.

解答形式

半角数字で解答してください

漸化式と極限

nanohana 自動ジャッジ 難易度:
5月前

3

問題文

$$S_{n}=(n-2)a_{n+1}$$$$a_{1}=1$$$$\lim_{n\to \infty}S_{n}が有限の値に収束する。$$$$このとき、a_{3}の値を求めよ。$$$$ただし、S_n=a_1+a_2+・・・+a_nである。$$

解答形式

$$a_{3}の値を半角数字で入力してください。$$

8月前

2

問題文

三辺の長さがa!、b!、c!(a,b,cは自然数)となる直角三角形は存在するか。

解答形式

存在するならば組(a,b,c)を1組入力してください。存在しないならば、存在しないことを証明してください。(簡単にでいいです)

自作問題その8

MARTH 自動ジャッジ 難易度:
11月前

8

関数列 $\{f_n\}_{n=0,1,\dots}$ が以下を満たします.

  • $f_{0}(x)=e^{e^x}$
  • $f_{n}(x)=\dfrac{d}{dx}f_{n-1}(x)\quad (n=1,2,\dots)$.

また, 実数列$\{A_n\}_{n=1,2,\dots}, \{B_n\}_{n=1,2,\dots}$を以下のように定義します.

  • $\displaystyle A_n=\lim_{x\rightarrow-\infty}e^{-x}f_{n}(x)$ .
  • $\displaystyle B_n=\lim_{x\rightarrow-\infty}e^{-x}\big(e^{-x}f_{n}(x)-A_n)$.

$B_{24}$ の値を求めてください.

方程式の実数解

RentoOre 自動ジャッジ 難易度:
11月前

7

問題文

$x$ についての方程式 $xe^{2\sqrt{x}}=9(\log{3})^2$ の実数解を求めよ。

解答形式

解をすべて答えてください。値の小さい順に1行目から入力してください。
なお,解答にあたって,特殊な数式は次のように入力してください。

対数:$\log_n{m}$ = \log_{n}{m}, $\log{m}$ = \log{m}
指数($\sqrt{m} = m^{\frac{1}{2}}$もすべて指数として入力してください):$n^{m}$ = n^{m}
分数:$\frac{a}{b}$ = \frac{a}{b}


問題

$n$を $0$ でない実数とします。以下の定積分を求めてください。

解答形式

答えだけでもいいですが、方針があると嬉しいです。

9月前

4

問題文

図のような、一目盛りが1cmの方眼に書いた図形があります。三角形ABCと三角形ACEは合同で、角ADF=90°です。DFは何cmですか。

解答形式

四捨五入して小数第2位まで、半角数字で答えてください。
例)$\frac{52}{3}$→17.33

ちょっと長い方程式

noname 自動ジャッジ 難易度:
10月前

5

少し問題を変更いたしました。ご迷惑をおかけしてしまい申し訳ございません。

問題文

$x,y$を整数とします。次の式を満たす$x,y$の組$(x,y)$を全て求めてください。$$x^2y^2+3x^2y-12xy^2-5x^2-36xy+25y^2+60x+78y=123$$

解答形式

$x$と$y$の積$xy$としてあり得るものの総和を半角で解答してください。

xsinxを含む定積分

zyogamaya 自動ジャッジ 難易度:
4年前

4

問題文

$I=\displaystyle \int_{0}^{\pi}\frac{x\sin x}{\sin^{2\cdot2}x -2\sin^2x+2} dx$を求めよ。

解答形式

答えは、
$\displaystyle I=\frac{\pi}{a\sqrt{b}}(c\log(\sqrt{d}+e)+\pi)$の形になります。($a,b,c,d,e$は1桁の自然数)
「abcde」(5桁の自然数)を入力してください。なお、センター、共通テスト形式で数字を埋めてください。

いい数

nanohana 採点者ジャッジ 難易度:
8月前

5

問題文

$$p、p^2、p^3、p^4$$が10進数表記ですべていい数字となる自然数pは存在するか。
ただし、いい数字とはどの桁も素数であるような自然数のことである。例えば、252、7352のような自然数のことである。

解答形式

存在するならばそのような自然数pを入力してください。存在しないならば、存在しないことを証明してください。(簡単にでいいです。)

階乗の級数

MARTH 自動ジャッジ 難易度:
8月前

6

$a_1+2a_2+3a_3=n$ を満たす非負整数の組 $(a_1,a_2,a_3)$ 全てについて,
$$\frac{(a_1+a_2+a_3)!}{a_1!\times a_2!\times a_3!}$$
の総和を $f(n)$ とします.
$f(n)\equiv 6 \pmod{12}$ を満たす最小の正整数 $n$ を求めてください.

[F] 執根号神

masorata 自動ジャッジ 難易度:
4年前

1

問題文

$4$ 点 $\mathrm{A,B,C,D}$ が $\mathrm{AB=BC=CD}=1,\mathrm{DA}=2$ を満たし、さらに線分 $\mathrm{BC}$ と線分 $\mathrm{DA}$ が点 $\mathrm{P}$ で交わっている。線分 $\mathrm{AP}$ の長さが最大となるとき、

$$
\mathrm{AC}=\frac{\sqrt{\fbox{アイ}-\sqrt{\fbox{ウエオ}\ }+\sqrt{\fbox{カキクケ}+\fbox{コサ} \sqrt{\fbox{シスセ}\ }\ }\ }}{\fbox{ソ}}
$$

である。ただし、$\mathrm{XY}$ で線分 $\mathrm{XY}$ の長さを表すものとする。

ヒント

必要であれば以下の事実を用いてよい。

・実数 $a,b,c$(ただし $a\neq-64$ )について、$\displaystyle p=\frac{b+c-a^2}{a+64},q=64p+a^2-b$ とおくと、$x$ についての恒等式

$$
1024x^4+64ax^3+bx^2+2cx+p^2-q=(32x^2+ax+p)^2-q(x-1)^2
$$

が成り立つ(これは、右辺を展開して係数比較することで簡単に確かめられる)。

解答形式

ア〜ソには、0から9までの数字または「-」(マイナス)が入る。
文字列「アイウエオカキクケコサシスセソ」を半角で1行目に入力せよ。
ただし、分数はそれ以上約分できない形で、かつ根号の中身が最小になるように答えよ。