アクセスがしづらい状況について (2025年1月23日14:22)
現在、ポロロッカにアクセスがしづらい状況が発生しております。 サーバー強化など応急処置は完了しておりますが、本格的な調査は2月ごろとなる見込みです。 ご迷惑をおかけし、大変申し訳ございません。

高校入試プレ 物理

kohaku 採点者ジャッジ 難易度: その他 > 理科
2025年2月5日15:53 正解数: 0 / 解答数: 0 ギブアップ不可

焦点距離が$f$である4つの凸レンズ$α,β,γ,δ$があり、それらの光軸がすべて一致するように置かれている。隣り合う凸レンズ間の距離はすべて$f$である。
いま、長さ$a$の矢印型の物体を光軸上に、光軸と直交するように置く。このとき、物体と凸レンズ$α$のレンズ面の間の距離は$d$である。物体の先端(矢の部分)を点$A$、点$A$から光軸に下ろした垂線の足を$B$、凸レンズ$α,β,γ,δ$の中心を$C,D,E,F$、また凸レンズ$α,δ$の焦点のうち、他の凸レンズの中心でないものをそれぞれ$F_1,F_2$とする。点$A$から発せられた光のうち、光軸に平行なもの及びそれが屈折したものと凸レンズ$α,γ,δ$との交点を$G,H,I$、点$C$を通るもの及びそれが屈折したものと凸レンズ$β,γ$との交点を$J,K$、点$F_1$を通るものと凸レンズ$α,β,δ$との交点を$L,M,N$とする。更に、直線$KF,IF_2$の交点を$O$とし、点$O$から光軸に下ろした垂線の足を$P$とするとき、$OP=b$である。

以下では、レンズ面を十分広いものとして扱い、物体から発せられた光は必ず凸レンズを通過するものと考える。また、$xy$平面とは$F_2$を原点、光軸を$x$軸、直線$RF_2$を$y$軸とする平面であるものとする。

⑴$EK$を、$a,d,f$を用いて表せ。

⑵$FP$を、$a,b,d$を用いて表せ。

⑶$OP$を、$a,d,f$を用いて表せ。

⑷$NF$を、$a,d,f$を用いて表せ。

以上のことより、この実験では物体と①(同じ向き・反対向き)の②(実像・虚像)ができると分かる。⋯(※)

次に、点$F_2$を中心とし、その光軸が他の凸レンズの光軸と一致する凸レンズ$ε$を置いた。この凸レンズのレンズ面と直線$KF$の交点を$Q$、点$N$を通り光軸な平行の光との交点を$R$とする。また、この凸レンズの焦点のうち$F_1$でないほうを$F_3$とする。更に、直線$IF_2$と$RF_3$との交点を$S$、点$Q$を通り光軸に平行な光との交点を$T$とする。凸レンズ$ε$を置いた以外は、一切操作を加えていないものとする。

⑸(※)の文章が正しいものとなるように、括弧の中に当てはまる内容を1つずつ選べ。

⑹$xy$平面上における直線$F_2S$の式を求めよ。ただし、左辺に$y$、右辺に$x$を用いた式が置かれる形で答えること。

⑺$xy$平面上における直線$RS$の式を求めよ。ただし、左辺に$y$、右辺に$x$を用いた式が置かれる形で答えること。

⑻$xy$平面上における$T$の座標を、$a,d,f$を用いて表せ。

⑼$xy$平面上における$S$の座標を、$a,d,f$を用いて表せ。

このことから、前の実験と同様に像ができると分かる。

⑽点$T$と光軸の間の距離を$b'$とする。$\frac{1}{b'}$を、$a,b$を用いて表せ。


スポンサーリンク

解答提出

この問題は出題者ジャッジの問題です。 出題者が解答を確認してから採点を行います。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または