第2問

sulippa 採点者ジャッジ 難易度: 数学
2025年5月19日20:00 正解数: 0 / 解答数: 0 ギブアップ不可
この問題はコンテスト「整数問題4問」の問題です。

問題文

$p $を 3 以上の素数とする。$X = (p-1)! $とおく。
次の和 S を考える。
(1) $S = X^X + X^{pX}$
$S $を $p^2 $で割った余りを求めよ。
(2)$p$ を $3$ 以上の素数とし、$X=(p-1)!$ とおく。
$k=1, 2, \dots, p-1$ に対して、$A_k = k^{(X^p)}$ および $B_k = (X^k)^{(p-1)}$ と定義する。
次の和 $S$ を考える。
$$S = \sum\nolimits_{k=1}^{p-1} (A_k + B_k)$$
$S$ を $p^2$ で割った余りを求めよ。


スポンサーリンク

解答提出

この問題は出題者ジャッジの問題です。 出題者が解答を確認してから採点を行います。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または