$p$ を $101$ 以上の素数とする。$g$ を法 $p$ における原始根とし、$1$ から $p-1$ までの整数 $k$ に対して、$g^{\text{ind}(k)} \equiv k \pmod p$ となる $0 \le \text{ind}(k) \le p-2$ の整数 $\text{ind}(k)$ を定める。
ある整数 $k$ ($2 \le k < p$) に対して、数列 ${a_n}$ を以下で定める。
* $a_1 = k$
* $a_{n+1} \equiv a_n \cdot g \pmod p \quad (n=1, 2, 3, \dots)$
また、数列 ${b_n}$ を $b_n = \text{ind}(a_n)$ で定め、数列 $\ {b_n}$ の初項から第 $p-1$ 項までの和
$S = \sum_{n=1}^{p-1} b_n$
とする。
このとき、和 $S$ が $2000$ で割り切れるような素数 $p$ の最小値を求めよ。
半角左詰め