整数 $x$ と素数 $p$ が、以下の連立合同式を満たす。
$x \equiv p \pmod{9797}$ $x \equiv 11p + 69 \pmod{9991}$
この条件を満たす最小の素数 $p$ を求めよ。
半角左詰め
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
1から2pの2p個の異なる自然数を全て並べる時に隣り合う二つの積が常に偶数になる通りをSpとするとき、それがpで最大何回割れるか答えろ. (ただしpは素数とする)
(半角の自然数が答え)
$p=3, \quad q=5, \quad r=7$
$X = p^q + q^p$ $Y = q^r + r^q$ $Z = r^p + p^r$
$N = X^p + Y^q + Z^r$
このとき、$N$を$105$で割った余りを求めよ。
$\angle{ADC}=\angle{BCD}=90^\circ,BAD>90^\circ$なる台形$ABCD$について, $$\angle{BAC}=90^\circ,AB=4,AC=3$$ が成立した.$ABCD$の面積を求めよ.
求める値は互いに素な正整数$p,q$を用いて$\frac{p}{q}$と表せるので,$p+q$を解答してください.
与式を因数分解せよ。x^6 - 41x^5 + 652x^4 - 5102x^3 + 20581x^2 - 40361x + 30030
因数分解された式のみ回答
正整数 $a$ に対して,$\dfrac{n(n+2)}{a}$ が平方数であるような正整数 $n$ が無限に存在しました.さらに小さい方から $i$ 番目のものを $n_i$ とすると,任意の正整数 $i$ が $n_{i+2}+n_{i}=98n_{i+1}+2n_1$ を満たしました.このとき,$a$ としてありうるものの総和を解答してください.
₁₃₅C₃₀を7で割った余りを求めてください。
半角数字で入力してください。
0,1,2,……,8 の数字から一つずつ選んでa,b,c,d,e,f,gに代入するという操作を考える。 数字の重複を許さないとき、十進表記された7桁の数abcdefgが3の倍数となる確率を求めよ。 ただし、a=0の場合も認めます。
互いに素な正整数q,pを用いて p/q と表せるため、p+qを解答してください。
モニターに0が表示されている。ここには3つのボタンがあり、 ・ボタン$A$を押すとモニターの数字が1増える。 ・ボタン$B$を押すとモニターの数字が2増える。 ・ボタン$C$を押すとモニターの数字が3増える。 ボタン$A~C$をそれぞれ任意の回数押したとき、 最後に表示される数字が300以下の非負の3の倍数となるようなボタンの押し方の総数を求めよ。ただし、ボタンを押す順番は区別しない。
例)半角数字で入力してください。
$AB=BC$で、面積が$2025$であるような二等辺三角形$ABC$がある。$AB(=BC)$の最小値を求めよ。
半角数字で$AB^2(=BC^2)$の値を入力してください。
以下の連立方程式を満たすような実数の組$(a,b,c,d)$の個数を求めよ。 $$ \begin{cases} ab^2c^3d^4=1 \\ a^4bc^2d^3=1\\a^3b^4cd^2=1\\a^2b^3c^4d=1\end{cases} $$
半角数字で個数を入力してください。
0,1,2,……,8 の数字から一つずつ選んでa,b,c,d,e,f,gに代入するという操作を考える。 数字の重複を許すとき、十進表記された7桁の数abcdefgが3の倍数となる確率を求めよ。 ただし、a=0の場合も認めます。 (似た問題を投稿しています。解答する場所を間違えないように注意してください。)
互いに素な正整数p,qを用いてp/qと表せるため p+qを解答してください。
$n$を整数とする。$n^{8}-n^{2}$を割り切る最大の自然数を求めよ。