公開日時: 2024年8月24日2:37 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 採点者ジャッジ
台形ABCDにおいて、∠B=∠C=90°であり、
AB=4で、2点B,Dは直線AEについて対称である。BE=3となる点EをBE上にとり、∠BEF=90°となるAD上の点をFとする。また、BDについて、AE,EFとの交点をそれぞれG,Hとする。このとき、次の問いに答えよ。
⑴△ABC∽△BCDを証明せよ。
⑵∠BAE=a°とするとき、4点A,B,E,Dを通る円において、弧ABEDの長さを求めなさい
⑶△GEHの面積を求めなさい
証明なので、⑴は厳密に
⑵,⑶は答えのみでお願いします
公立高校を意識するとしたら、15分くらいですかね
公開日時: 2024年8月23日20:02 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
4a²+b²+c²=d²を満たす素数の組について、
abcdの総和を求めよ。
半角で答えて下さい。
公開日時: 2024年8月23日0:18 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
方程式x⁶−6x⁵+15x⁴−47x³+15x²−6x+1=0の実数解を求めて下さい。
正の整数a.b.cを用いて$\frac{b±√c}{a}$の形で表せられるので、a+b+cの値を半角で解答して下さい。