公開日時: 2024年8月5日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$AB=30,AC=36$の三角形$ABC$があり線分$BC$上に$BDEC$の順に並び$BD:DE:EC=1:5:3$となるよう
点$D,E$をとると,線分$AB$と$AC$に接し点$D,E$を通る円が存在した.
このとき$BC$の長さの$2$乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
公開日時: 2024年8月5日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
三角形$ABC$の外心を$O$とすると以下が成立した.
$AO=25,BC=48 $
このとき三角形$ABC$の面積としてあり得る最大値を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
公開日時: 2024年8月5日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$AB=36,AC=24$の三角形$ABC$があり線分$AB$を$1:2$に内分する点$D$,線分$AC$を$3:1$に内分する点$E$をとり$BE$と$CD$の交点を$P$とすると$AP=14$であった.
このとき$BC$の長さの$2$乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
公開日時: 2024年8月5日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
外心を$O$とする三角形$ABC$があり線分$BC$上に点$D$をおくと以下が成立した.
$AD=CD,BD-CD=15,OB=24,OD=9$
このとき$AB$の長さを解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
公開日時: 2024年8月5日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
円に内接する四角形$ABCD$があり,対角線の交点を$P$とすると$AB=AD=24,AP=16$であった.
このとき$CP$の長さを解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
公開日時: 2024年8月5日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
正三角形$ABC$と$AP=2,BP=CP=3$を満たす点$P$がある.
$AB$の長さとしてあり得る値の総和の$2$乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
公開日時: 2024年8月5日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
凸四角形$ABCD$は内接円と外接円を持ち,$AB=5,DC=3,AB//DC$であった.
$AC$の長さの$2$乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
公開日時: 2024年8月5日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$AB=AC=90$の三角形$ABC$があり線分$BC$の中点を$M$とすると
三角形$ABC$の垂心$H$は線分$AM$を$4:1$に内分した.
このとき三角形$ABC$の面積の$2$乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
公開日時: 2024年8月5日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
三角形$ABC$の重心を$G$とすると$AB=5,AC=7,BG=2$であった.
このとき$CG$の長さの$2$乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
公開日時: 2024年8月5日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
三角形$ABC$の外心を$O$とする. $AO$を直径とする円と$AB$,$AC$の交点のうち$A$でないものをそれぞれ$D,E$とすると$DE=3,CD=5$であり四角形$BCED$は内接円を持ちました.
このとき三角形$ABC$の面積を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
公開日時: 2024年8月5日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
三角形$ABC$の重心$G$に関して$A$と対称な点を$D$とすると$4$点$ABDC$は共円であり,
$AB=6,BD=4$であった.このとき$AD$の長さの$2$乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
公開日時: 2024年8月5日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
中心を$O$とする円上に点$A,B$があり,線分$AB$上に点$P$をとると$AB=7,AP=2,OP=3$であった.
このとき$AO$の長さの$2$乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.