公開日時: 2025年5月13日0:17 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$1$ 以上 $461$ 以下の整数からなる数列 $(a_1,a_2,\cdots,a_N)$ は以下を満たします.
このとき, $N$ の値は一意に定まるので, $N$ の値を求めてください.
ただし, $461$ は素数であり, $2^n\equiv 1\pmod{461}$ をみたす正整数 $n$ の最小値は, $460$ であり, $3a_1\equiv 5\pmod{461}$ です.
公開日時: 2025年5月11日17:38 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 採点者ジャッジ
素数 $p$ と正の整数 $n$ が、以下の等式を満たすとします。
$$\frac{n^2+np+p^2}{n+p} = 2p-1$$
このような組 $(n,p)$ を全て求めてください。
解が有限個であるとされた場合は、全ての解と、それ以外に解が存在しないことの証明を、簡単で構わないのでお願いします。無限個とされた場合は証明いらないので、何らかの形で解を表してください。証明に完全性がないと見なした場合は、採点機能がない都合上、99点をあげたいところも不正解とさせていただきます
公開日時: 2025年5月11日0:51 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$n=2\times 577$とする. このとき以下の値を素数$577$で割った余りを求めよ.
$$\sum _{k=0}^{n} {}_{n+k} \mathrm{C}_{n-k}\cdot {}_{2k} \mathrm{C}_{k}$$
答えは正整数となるので、その値を解答してください
公開日時: 2025年5月10日23:22 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
四面体 $\mathrm{ABCD}$ は
$\ \mathrm{AB}=\mathrm{BC}=\mathrm{CA}=6,\ \mathrm{AD}=\mathrm{BD}=4,\ \mathrm{CD}=5$
を満たす.このとき,四面体 $\mathrm{ABCD}$ の体積 $V$ と,外接球の半径 $R$ を求めよ.
解答においては,$1$ 行目に $V^2$ を,$2$ 行目に $R^2$ を記して答えよ.
ただし,整数でない有理数は既約分数(分母は自然数,分子は整数で,互いに素)で表し,$\displaystyle\frac{5}{13}$ なら
5/13
のように記入せよ.
公開日時: 2025年5月10日22:50 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
円に外接する凸四角形 $\mathrm{ABCD}$ について,辺 $\mathrm{AB},\mathrm{BC},\mathrm{CD},\mathrm{DA}$ と円との接点をそれぞれ $\mathrm E,\mathrm F,\mathrm G,\mathrm H$ とし,$\mathrm{AE},\mathrm{BF},\mathrm{CG},\mathrm{DH}$ の長さをそれぞれ $a,b,c,d$ とする.このとき,四角形 $\mathrm{ABCD}$ の面積 $S$ を $a,b,c,d$ により表せ.
ただし,解答に際しては $a=3,\ b=4,\ c=5,\ d=7$ の場合の $S^2$ の値を答えよ.
整数でない有理数は既約分数(分母は自然数,分子は整数で,互いに素)で表し,$\displaystyle\frac{5}{13}$ なら
5/13
のように記入して答えよ.
公開日時: 2025年5月10日22:32 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
互いに外接する3つの円 $J,K,L$ があり,$K$ と $L$ の接点を $\mathrm A$,$L$ と $K$ の接点を $\mathrm B$,$J$ と $K$ の接点を $\mathrm C$ とする.$\triangle\mathrm{ABC}$ について,頂点 $\mathrm A,\mathrm B,\mathrm C$ の対辺の長さをそれぞれ $a,b,c$ とするとき,円 $J,K,L$ の半径を求めよ.
ただし,解答に際しては $a=17,\ b=13,\ c=14$ の場合の $J$ の半径の値を答えよ.
整数でない有理数は既約分数(分母は自然数,分子は整数で,互いに素)で表し,$\displaystyle\frac{5}{13}$ なら
5/13
のように記入して答えよ.
公開日時: 2025年5月10日8:04 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$p$を$3$より大きい素数とする
$S=\sum_{k=1}^{p-2} k \cdot (k!) \cdot ((p-k-1)!)$
を$p$で割った余りを求めよ。
解答は既約分数で表せるので、
1行目に分子、
2行目に分母
を半角で書いてください
分母は1になる場合も書いてください