公開日時: 2025年1月6日0:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ
$$\int_{-\sqrt{2}}^{\sqrt{2}}(5^x-5^{-x})dx$$
公開日時: 2025年1月5日4:41 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$$[(5√2)+7)^{2011}]を14,49,50でそれぞれ割った余りの合計を求めろ$$
ただし[x]でxの以下の最大の整数とする。
また、順に余りをx,y,zとしたとき0≦x≦13,0≦y≦48,0≦z≦49とする
公開日時: 2025年1月5日4:16 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
非負整数r,sを用いて
$$334r+2025s=m$$の形に表せない正の整数mの個数を求めろ
公開日時: 2025年1月5日1:15 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
縦19区画、横28区画のグリッドがある
右折(↑→)と左折(→↑)両方の数の和が10である時
最短経路は何通りあるか?
非負整数で答えろ
公開日時: 2025年1月4日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
三角形$ABC$の内心を$I$とすると$AB=65,AC=78,AI=39$であったので
$BC$の長さを解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
公開日時: 2025年1月4日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$AB=12,BC=14,CA=16$の三角形$ABC$があり$∠A$の内角二等分線と
$BC$の交点を$D$とする.線分$AC$上に$DB=DE$となる点$E$をとるとき,
$CE$の長さとしてあり得る値の総和を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
公開日時: 2025年1月4日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
鋭角三角形$ABC$があり$∠A$内の傍心を$P$とすると$∠APB=23°$であったので,
$∠BAC$の大きさを度数法で表したときにあり得る最小の整数値を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
公開日時: 2025年1月4日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
正方形$ABCD$があり線分$CD$上に$∠DAP=19°$となるよう点$P$をおき,
$P$から$AC$への垂線の足を$H$とするとき$∠CBH$の大きさを度数法で解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
公開日時: 2025年1月4日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$AB=AE,BC<DE$を満たす円に内接する五角形$ABCDE$がある.
$AC$と$BE$の交点を$F$,$AD$と$BE$の交点を$G$とすると
$BG=153,EF=187,FG=117$が成立した.
直線$CD$と直線$BE$の交点を$P$とするとき$BP$の長さを解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.