全問題一覧

カテゴリ
以上
以下

A

Nyarutann 自動ジャッジ 難易度:
38日前

31

問題文

$N, E, K, O$ には,$1$ 以上 $9$ 以下の相異なる正整数が入ります.
$$
N\times{E}\times{N}\times{E}\times{K}\times{O}=K\times{O}\times{N}\times{E}\times{K}\times{O}
$$を満たすとき,$N+E+K+O$ としてあり得る値の最大値と最小値のを求めてください.

解答形式

答えは正整数になるので,半角数字で解答してください。

D

Nyarutann 自動ジャッジ 難易度:
38日前

20

問題文

アルファベット $9$ 文字 $A, I, K, M, N, O, R, S, U$ には相異なる $1$ 以上 $9$ 以下の正整数が入ります.

を満たすとき,$A, I, K, M, N, O, R, S, U$ は一意に定まるので,これを順に解答してください.

解答形式

カンマやスペースなどを入れず,半角数字のみで解答してください.
例えば,$A=1, I=2, \ldots, U=9$ のとき,$123456789$ のように解答してください.

C

Nyarutann 自動ジャッジ 難易度:
38日前

17

問題文

いま,「飛翔の武神・真田幸村」「覚醒のネコムート」「大狂乱のネコライオン」(以降真田ムートライオンと表記)がおり,$3$ キャラが同じ距離をそれぞれ一定速度で移動します.最初,$3$ キャラは真田ライオンムートの順に速く,真田ライオンの所要時間の差と,ライオンムートの所要時間の差の比は $6:5$ でした.しかし,ムートの本能が解放され,移動速度が $10$ 上がると,真田ムートライオンの順に速くなり,真田ムートの所要時間の差と,ムートライオンの所要時間の差は $11:10$ になりました.
 このとき,本能解放後のムートの速度としてあり得る最小の正整数値を求めてください.
 ただし,他のキャラの速度も正整数値であるとします.

解答形式

答えは正整数値となるので,半角数字で解答してください.

B

Nyarutann 自動ジャッジ 難易度:
38日前

19

問題文

$AD$ と $BC$ が平行であるような等脚台形 $ABCD$ において,$AB, BC, CD, DA$ の中点を $K, M, N, O$ ,$AC$ と $BD$ の交点を $E$ としたとき,以下が成り立ちました.
$$
MO=24 NE=\dfrac{\sqrt{1115}}{2} KO=20
$$このとき,四角形 $NEKO$ の面積としてあり得る値の総和を求めてください.

解答形式

答えは正整数になるので,半角数字で解答してください.

いつものking property(に似た)問題

nps 自動ジャッジ 難易度:
40日前

1

問題文

∮(-π/6→π/3) ((sinx)^3)/(sinx+cosx)dxの値を求めよ。

解答形式

解答は π/a-(√ b+c)/d-(1/e)log(√f+g)の形になります。
a,b,c,d,e,f,gに当てはまる自然数を順に半角で答えてください。
また、1つの値の間は1つずつ空白を開けるようにしてください。
(例)a=2, b=3, c=11,d=5,e=6,f=7,g=8の場合、
2 3 11 5 6 7 8


問題文

nを一桁の自然数とする。xについての多項式、

∫(0→x) (t^3 + {1/√(n-2)(n-3)(n-4)} t^-2 +1)^n dt

について、x^6の係数を自然数にするようなnを求めなさい。

解答形式

半角で一桁の数字を入力してください。

連続する整数の積

noname 自動ジャッジ 難易度:
45日前

7

$n$を正の整数とします。連続する$10$個の整数の積$n(n+1)(n+2)(n+3)…(n+9)$が$2025^3$で割り切れるような$n$としてあり得る最小のものを求めてください。

解答形式

$n$の値を半角で入力してください。

社会 歴史➀

s16-1159@ed.city.minoh.lg.jp 自動ジャッジ 難易度:
46日前

9

江戸幕府を開いた人物は?

フルネームで答えること。

工夫すると簡単になる問題

ac 自動ジャッジ 難易度:
47日前

16

問題

式1の時、式2の解を求めよ。
ただし、数の小さい順に答え、
答えが2つ以上ある場合、「,」を用いること。
例 2分の1と1の時は、1/2,1

式1

$$
4a^{2}-4a=-1
$$

式2

$$
(2a-2)^{10000}
$$

工夫すると簡単になる問題

ac 自動ジャッジ 難易度:
47日前

3

問題

式1の時、式2の解を求めよ。
ただし、数の小さい順に答え、
答えが2つ以上ある場合、「,」を用いること。
例 2分の1と1の時は、1/2,1

式1

$$
12a^{2}-a=1
$$

式2

$$
16a^{2}-8a-9a^{2}-6a
$$

第1回琥珀杯 大問1

Kohaku 自動ジャッジ 難易度:
49日前

13

問題文

正整数$n$の値を無作為に定めるとき、$\sqrt{n}^\sqrt{n}$が有理数となる確率を求めよ。

解答形式

0または1の場合はそのまま答え、互いに素な正整数$a,b$を用いて$\frac{b}{a}$と表せる場合は$ab$を解答してください。

第1回琥珀杯 大問5

Kohaku 自動ジャッジ 難易度:
49日前

12

問題文

円$O_1,O_2,O_3$は点$O$を中心とする同心円で、この順に半径が小さい。円$O_1,O_2,O_3$の周上に、それぞれ点$A,B,C$をとるとき、$△ABC$の内部または周上に点$O$が含まれる確率を求めよ。

解答形式

0または1の場合はそのまま答え、互いに素な正整数$a,b$を用いて$\frac{b}{a}$と表せる場合は$ab$を解答してください。