次の無限積の値を評価してください。
$$ \prod_{n=2}^{\infty} \left( 1 - \frac{1}{n^3} \right) $$
$1/2$のように半角で入力してください
次の広義積分の値を求めなさい。
$$ \int_0^\infty \sin(x^2) dx $$
$\sqrt\frac{1}{2}$の場合は√1/2と解答してください。
下の問題の積分の値を求めなさい。
$$ \int_0^\infty \frac{\ln(x)}{(x^2+1)^2} dx $$
例)$-\frac{1}{2}$の場合
-1/2
と半角英数字で入力してください。
四角形$ABCD$があり、次の条件を満たします。
$∠A=∠B=∠C, ∠D=135°, BC=4\sqrt{6}, CD=8$
この四角形の面積$S$は$a + \sqrt{b}$の形で表されるので、$a + b$を解答してください。
半角数字で答えをそのまま入力。
問題に不備等あればtwitterのDMなどで気軽にお願いします。
Tex初めて使いました。
問題思いつくのは簡単なんですけど、解説は未だに上手く書けませんね…
θに関する方程式
$$
sinθ=5
$$ の解を求めよ。
例)$$「A±B」$$の形で入力してください。純虚数が係数として出てくる場合は項の1番前に持ってきてください。nを整数とする、などの記述はしなくても大丈夫です。「±」は、「プラスマイナス」と入力すれば出てきます🍀
$ω=e^{\frac{2πi}{7}}$を原始 7 乗根とする$A=ω+ω 2 +ω 4$および$B=ω 3 +ω 5 +ω 6$ とおくとき、$A^3 +B^3$ の値を求めよ。
半角英数字入力してください。
$\sin \angle BAC = \dfrac{7}{8}$ を満たす鋭角三角形 $ABC$ について,$B$ から $AC$ に下ろした垂線の足を $D$,$C$ から $AB$ に下ろした垂線の足を $E$ とします.また,線分 $BC$ 上に点 $F$ を $\angle DEF = 90^\circ$ を満たすように取ったところ $BF=2, CF=6$ が成立しました.このとき,三角形 $ABC$ の面積の二乗を求めてください.ただし,答えは互いに素な正整数 $a,b$ を用いて $\dfrac{b}{a}$ と表されるので,$a+b$ の値を解答してください.
半角整数値で解答してください.