全問題一覧

カテゴリ
以上
以下

四面体上の三角形と重心

nps 自動ジャッジ 難易度:
45日前

0

体積が1である四面体OABCの辺OA, OB, OC上をそれぞれ点P, Q, Rが別々に動くとき,三角形PQRの重心Gが動き得る領域の体積を求めよ。
半角で入力し,分数は 分子/分母 の形で入力してください。

KOTAKE杯005(F)

MrKOTAKE 自動ジャッジ 難易度:
45日前

20

問題文

$AB<AC$ なる三角形 $ABC$ について,$AB=AD$ なる線分 $BC$ (端点を含まない) 上の点を $D$,円 $ABD$ と線分 $AC$ の交点を $E(\neq A)$,円 $BEC$ と線分 $AD$ の交点を $F$ とする.
直線 $BF$ と円 $FDC$ が再び交わる点を $P$ とすると,$AP\parallel BC$ かつ $PE=5, BC=12$ が成立したとき,$AB$ の長さの二乗は互いに素な正の整数 $a, b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答せよ.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.
Writer: pomodor_ap

KOTAKE杯005(A)

MrKOTAKE 自動ジャッジ 難易度:
45日前

31

問題文

三角形 $ABC$ の内部に点 $D$ をとると $DB=DC,AC=AD, \angle DBC=19^{\circ}, \angle ABD=30^{\circ} $ が成立したので $\angle BAC$ の大きさを度数法で解答せよ.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.
Writer: pomodor_ap

KOTAKE杯005(C)

MrKOTAKE 自動ジャッジ 難易度:
45日前

21

問題文

鋭角三角形 $ABC$ があり, $B$ から $AC$ への垂線の足を $D$ とし,重心を $G$ ,垂心を $H$ とする.このとき $4$ 点 $B,C,G,H$ は共円であり$AD=3,CD=5$であったので, $AB$ の長さの $2$ 乗を解答せよ.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.
Writer: MrKOTAKE

KOTAKE杯005(B)

MrKOTAKE 自動ジャッジ 難易度:
45日前

22

問題文

三角形 $ABC$ があり, $ \angle ACB$ の二等分線と $AB$ の交点を $D$ とし,線分 $BC$ 上に点 $P$ ,線分 $AC$ 上に点 $Q$ をとると相異なる $4$ 点 $A,C,D,P$と$B,C,D,Q$ はそれぞれ共円であり $CP=3,CQ=4,AB=15$ が成立した.このとき三角形 $ABC$ の面積の $2$ 乗を解答せよ.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.
Writer: MrKOTAKE

KOTAKE杯005(D)

MrKOTAKE 自動ジャッジ 難易度:
45日前

16

問題文

$AB=5, AC=8, \angle A=60^{\circ}$ なる三角形 $ABC$ について,外接円の $A$ を通らない弧 $BC$ の中点を $M$ とする.相異なる $4$ 点 $P,Q,B,C$ がこの順で同一直線上に並び,$\angle APB:\angle MPB=\angle AQB:\angle MQB=3:1$ が成立した.線分 $PQ$ の長さは互いに素な正の整数 $a, b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答せよ.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.
Writer: pomodor_ap

KOTAKE杯005(E)

MrKOTAKE 自動ジャッジ 難易度:
45日前

14

問題文

$AB<AC$ なる鋭角三角形 $ABC$ について垂心を $H$ とし,三角形 $ABC$ の外接円と直線 $BH$ ,直線 $CH$ の交点をそれぞれ $(D\neq B),E(\neq C)$ とする.半直線 $DE$ と直線$BC$の交点を$P$とすると,三角形 $AEH$ の外接円は直線 $HP$ に点 $H$ で接し, $PH=3,AE=4$ であった.このとき線分 $AB$ の長さの $2$ 乗は互いに素な正の整数 $a, b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答せよ.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.
Writer: MrKOTAKE

第7問

sulippa 採点者ジャッジ 難易度:
46日前

0

設問7
数列 ${a_n}$ が $a_1 = 0, a_2 = 1$ および漸化式
$$ (n+1)a_{n+2} - (3n+2)a_{n+1} + 2na_n = 0 \quad (n \ge 1) $$
を満たす。一般項 $a_n$ を求めよ。

解答形式

例)ひらがなで入力してください。

第8問

sulippa 採点者ジャッジ 難易度:
46日前

2

設問8

正の数からなる数列 ${a_n}$ が $a_1 > 0$ および漸化式 $a_{n+1} = a_n + \frac{1}{a_n^2}$ ($n \ge 1$) を満たすとき、極限値 $\lim_{n \to \infty} \frac{a_n}{\sqrt[3]{3n}}$ を求めよ。


解答形式

第4問

sulippa 採点者ジャッジ 難易度:
46日前

1

設問4

数列 ${a_n}$ が $a_0=1, a_1=0, a_2=-1$ および漸化式
$$ a_{n+3} - 3a_{n+2} + 3a_{n+1} - a_n = 2^n \quad (n \ge 0) $$
を満たす。一般項 $a_n$ を求めよ。

解答形式

例)ひらがなで入力してください。

第5問

sulippa 採点者ジャッジ 難易度:
46日前

0

設問5

数列 ${a_n}$ が $a_1 = 2$ および漸化式 $a_{n+1} = \frac{a_n^2+2}{2a_n}$ ($n \ge 1$) を満たすとする。
一般項 $a_n$ を求めよ。

解答形式

例)ひらがなで入力してください。

第10問

sulippa 採点者ジャッジ 難易度:
46日前

1

問題文

数列 ${a_n}$ ($n \ge 0$) が、初期値 $a_0 = 3$ および以下の漸化式で定義されるとする。
$$a_{n+1} = a_n^2 - 2 \quad (n \ge 0)$$
この数列の一般項 $a_n$ を求めよ。
ただし、黄金比を$Φ$とする。


解答形式

例)ひらがなで入力してください。