全問題一覧

カテゴリ
以上
以下

Soft-Head

公開日時: 2021年4月27日0:00 / ジャンル: 謎解き / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ


tb_lb

公開日時: 2021年4月25日23:01 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 長さ

【補助線主体の図形問題 #012】
 日本各地に緊急事態宣言やら蔓延防止等重点措置やら発出されてピリピリしている昨今ではありますが、ここはひとつ心穏やかに図形問題と向き合うのはいかがでしょうか。今回も補助線次第で暗算処理可能なように調整してあります。ひらめきの快感をぜひ味わってください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
\def\mytri#1{\triangle \mathrm{#1}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. 全体の方針をぼんやりと
  2. ヒント1の内容を少しだけ具体的に
  3. ヒント2の内容をもう少し具体的に
  4. ヒント3の内容を具体的に

Kinmokusei

公開日時: 2021年4月25日11:31 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

図のように線分の長さが与えられたとき、青で示した線分の長さを求めてください。

解答形式

青い線分の長さを$x$とすると$x^2$は整数となるので、$x^2$を半角数字で解答してください。

Soft-Head

公開日時: 2021年4月25日0:00 / ジャンル: 謎解き / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ


home_bound_hiro

公開日時: 2021年4月23日15:21 / ジャンル: 謎解き / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

Q)点と線で表されている謎です
数字に入る文字を「カタカナ」で答えて下さい
・・ ﹣﹣・﹣ ・﹣
・・ ﹣・﹣﹣ ・・ →①ガミ
・﹣ ﹣﹣﹣・ ・・

・﹣ ﹣﹣ ﹣・
﹣﹣ ﹣・ ・﹣ →ハ②コ
・・ ・ ・ ﹣・

・・ ﹣﹣ ﹣﹣・﹣
・・ ﹣・ ﹣・・・ →①②③
・﹣ ・・ ﹣﹣﹣・

①②③=???

解答形式

カタカナで入力してください。

Soft-Head

公開日時: 2021年4月23日0:00 / ジャンル: 謎解き / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ


Soft-Head

公開日時: 2021年4月21日0:00 / ジャンル: 謎解き / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ


home_bound_hiro

公開日時: 2021年4月19日7:55 / ジャンル: 謎解き / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

文字に隠された有名企業は何?

センドル
ブレンド
タイキック
ナマケモン
ブース

解答形式

例)カタカナで入力してください。4社あります。順に沿って改行して解答入力でないと正解にはならないのでご了承ください。(企業名が合っていても、順番が違えば誤判定になります)

Soft-Head

公開日時: 2021年4月19日0:00 / ジャンル: 謎解き / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ


tb_lb

公開日時: 2021年4月18日22:52 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 長さ

【補助線主体の図形問題 #011】
 今日は傍心を登場させてみました。傍心への慣れ具合により難易度の体感が大きく変わるかもしれません。暗算でも解けるように調整してあります。存分に傍心の性質をお楽しみください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
\def\mytri#1{\triangle \mathrm{#1}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. 全体の方針をぼんやりと
  2. ヒント1の内容をやや具体的に
  3. ヒント2の内容をやや具体的に
  4. ヒント3の続き

Kinmokusei

公開日時: 2021年4月17日18:56 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

共通部分を持たない2円と、その共通接線があります。図中の同じ色で示した線分の長さが等しいとき、2円の半径比を求めてください。

※図は正確でないことに注意

解答形式

大円の半径を$R_1$、小円の半径を$R_2$とすると、$R_1:R_2=\fbox ア:\fbox イ$です。文字列 アイ を解答してください。
例:$R_1:R_2=5:2$ であれば 52 と解答

Soft-Head

公開日時: 2021年4月17日0:00 / ジャンル: 謎解き / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ