公開日時: 2025年12月21日13:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$\dfrac{51-n}{n-1}$ が平方数となるような整数 $n$ の総和を解答してください.
(13:17追記 $0$ も平方数に含むとします)
公開日時: 2025年12月21日13:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$30$ の正の約数を並べ替えた数列 $A$ としてありうるもの全てに対する,以下の操作方法の個数の総和を解答してください.
公開日時: 2025年12月21日13:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
上から $i$ 段目 $(1 \leq i \leq 2026)$ に $i$ 個の正整数を並べて三角形を作る方法であって,どの段も総和が $2026$ となるようなものの個数を素数 $2029$ で割ったあまりを解答してください.
公開日時: 2025年12月21日13:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
平方因子を持たない正整数 $n$ であって,$\dfrac{\phi(n)}{\gcd(n,\phi(n))} = 18$ を満たすものの総和を解答してください.
公開日時: 2025年12月21日13:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$S=\lbrace 0,1, \ldots , 30 \rbrace$ とします.関数 $f:S \rightarrow S$ であって,以下を満たすようなものの個数を $N$ とします.
$N = a \cdot b^c$ であるような正整数 $a,b,c$ について,$a+b+c$ の最小値を解答してください.
公開日時: 2025年12月19日12:22 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
自然数列$\ a_n$を以下のようにして定める.
$$a_{n+1}=\lceil \sqrt{n} \rceil a_n+\lfloor \sqrt{n} \rfloor$$
ただし,$\ \lceil x \rceil \in \mathbb{N},\ x \le \lceil x \rceil <x+1\ ,\ \lfloor x \rfloor \in \mathbb{N},\ x-1 < \lfloor x \rfloor \le x$
です.
このとき,$\ a_{2026}\ $が$\ 5$ で割り切れる最大の回数を求めてください.
整数で解答してください.
公開日時: 2025年12月16日20:52 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
以下の $x$ に関する $100$ 次方程式の(重解を含む)$100$ 個の複素数解を $\alpha_1,\alpha_2,...,\alpha_{100}$ とします.
$$x^{100}+x^{99}+2025x+12=0$$
このとき,以下の値を求めてください.
$$\sum_{k=1}^{100} {\alpha_k}^{100}$$
整数で解答してください.
https://x.com/atwr0711/status/2000173940698927172?s=20
こちらの14番の問題の改題です.
公開日時: 2025年12月15日21:22 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
円 $\Gamma$ に内接する不等辺三角形 $ABC$ について,その内心を $I$ とし,線分 $BC$ の中点を $M$ とします.線分 $AB,AC$ に接し $\Gamma$ に点 $T$ で内接する円が一意に存在するのでこの中心を $S$ とし,直線 $AI$ が $\Gamma$ と再び交わる点を $V$ とします.また,三角形 $STV$ の外心を $P$ とすると,線分 $IP$ 上の点 $H$ が以下を満たしました.
$$ \angle TAV = \angle HMI, \quad \angle THP = \angle TSV $$さらに, $SV = \sqrt{39}, \ MV = \dfrac{198}{53}$ が成り立つとき,三角形 $ABC$ の面積は互いに素な正の整数 $a,c$ および平方因子を持たない正の整数 $b$ を用いて $\dfrac{a \sqrt{b}}{c} $ と表せるので, $a+b+c$ の値を解答してください.
正の整数を半角で解答.