三角形 ABC の頂点は A(0,0), B(6,0), C(4,6) である。
AC の中点を通り、BC に垂直な直線の方程式を求めよ。
この直線と AB の交点を求めよ。
この交点から頂点 C までの距離を求めよ。
三角形 $OAB$ がある.点 $C$ を$\angle CAO=\angle BAO$, $AC\perp CO$ となるように辺 $AB$ に対し点 $O$ と同じ側に取る.
また,点 $B$ から直線 $CO$ に引いた垂線の足を $D$ とする.
$C$ を通り直線 $OB$ に垂直な直線と $D$ を通り直線 $OA$ に垂直な直線の交点を $G$ とするとき,
$CD=17,\, GO=8,\, GC=15$ である.
このとき $AB$ の長さは互いに素な正整数 $a,b$ と平方因子を持たない正整数 $c$ を用いて $\dfrac{b\sqrt{c}}{a}$ と書けるので,$a+b+c$ を求めよ.
半角数字で入力してください。
実数$x,y$が
$$
\begin{cases}
x^2+y^2=1\\
2x^3+2y^3=1
\end{cases}
$$
を満たしているとき,$x+y$ のとりうる値をすべて求めよ.
解答に$sinθ,cosθ$を含む場合は,$cosθ(0<θ<π)$に統一し,記入例にしたがって全て$半角$で解答してください.なお,度数法で解答すると不正解となるので,弧度法を用いてください.
小数などを用いた近似値での解答は不正解となります.
複数の解答がある場合は小さい値から順に上から改行してください.
記入例
3cos(5π/6)
3cos(π/3)