数学の問題一覧

カテゴリ
以上
以下

MrKOTAKE

公開日時: 2025年1月4日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

三角形$ABC$の重心を$G$とすると,$∠AGB=120°,∠AGC=150°,AB=14$
であったので$AC$の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

MrKOTAKE

公開日時: 2025年1月4日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

鋭角三角形$ABC$があり垂心を$H$とすると$AH=7,BH=CH=2$であったので
$AB$の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

MrKOTAKE

公開日時: 2025年1月4日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

鋭角三角形$ABC$があり$BC$の中点を$M$とし,$B$から$AC$におろした垂線の足を
$D$とする.$AM$と$BD$の交点を$P$とし,半直線$CP$と$AB$の交点を$E$とすると$∠DEP=∠DMP,
DM=5,EM=2$が成立したので
三角形$ABC$の面積の$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

MrKOTAKE

公開日時: 2025年1月4日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

三角形$ABC$の内心を$I$とすると$AB=65,AC=78,AI=39$であったので
$BC$の長さを解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

MrKOTAKE

公開日時: 2025年1月4日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$AB=12,BC=14,CA=16$の三角形$ABC$があり$∠A$の内角二等分線と
$BC$の交点を$D$とする.線分$AC$上に$DB=DE$となる点$E$をとるとき,
$CE$の長さとしてあり得る値の総和を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

MrKOTAKE

公開日時: 2025年1月4日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

鋭角三角形$ABC$があり$BC$の中点を$M$,垂心を$H$とすると
$AM=20,BC=16,MH=4$であったので$AH$の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

MrKOTAKE

公開日時: 2025年1月4日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

鋭角三角形$ABC$があり垂心を$H$とする.$H$に関して$A$と対称な点を$D$とすると,
$4$点$ABCD$は共円であり$BH=5,AC=20$であったので
$AB$の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

MrKOTAKE

公開日時: 2025年1月4日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

正方形$ABCD$があり線分$CD$上に$∠DAP=19°$となるよう点$P$をおき,
$P$から$AC$への垂線の足を$H$とするとき$∠CBH$の大きさを度数法で解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

MrKOTAKE

公開日時: 2025年1月4日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$AB<AC$の鋭角三角形$ABC$があり垂心を$H$,外心を$O$とする.
直線$AO$と$BC$の交点を$D$とすると$AB:BD=5:3,CH=27,AH=19$
が成立したので$AC$の長さの$2$乗を解答してください.

解答形式

例)ひらがなで入力してください。

tb_lb

公開日時: 2025年1月3日17:59 / ジャンル: 数学 / カテゴリ: 算数 / 難易度: / ジャッジ形式: 自動ジャッジ

西暦問題 計算問題 2025年問題

${}$ 西暦2025年問題第3弾です。九九表81個の数の総和を求めると2025であることが、いろいろなところで語られています。それを元にアレンジしてみました。工夫をして計算してほしいところですが、根性でもどうぞ!

解答形式

${}$ 解答は求める和をそのまま入力してください。
(例)103 → $\color{blue}{103}$

sha256

公開日時: 2025年1月3日15:55 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

ガウス記号

問題文

以下の値を求めてください。
$$
\sum_{n=1}^{90}\sum_{k=1}^{n}\Big\lfloor{\frac{46}{91}+\frac{k-1}{n}}\Big\rfloor
$$

解答形式

答えは整数値になるので、半角数字で入力してください。

tb_lb

公開日時: 2025年1月2日18:15 / ジャンル: 数学 / カテゴリ: 算数 / 難易度: / ジャッジ形式: 自動ジャッジ

パズル 西暦問題 虫食算 2025年問題

${}$ 西暦2025年問題第2弾です。第1弾に引き続き虫食算で、今回は掛け算にしてみました。数学的手法(約数や倍数、偶奇性や剰余、不等式による絞り込み、などなど)を適宜用いることで面倒な場合分けや仮置きを軽減できるよう仕込んでいるのは変わりません。パズル的に解くのもよし、数学的にゴリゴリ解くのもよし、どうぞお好きなようにお楽しみください!

解答形式

${}$ 解答は上2行を「被乗数×乗数」の形で入力してください。
(例) $2025 \times 102 = 206550$ → $\color{blue}{2025 \text{×} 102}$
 入力を一意に定めるための処置です。数字は半角で、「×」の演算記号はTeX記法(\times)でも、絵文字や環境依存文字でもなく、全角記号の「×」でお願いします。空白(スペース)も入れる必要はありません。