数学の問題一覧

カテゴリ
以上
以下

Sry

公開日時: 2025年9月6日14:32 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題

$実数全体で定義され、実数値を取る定数でない関数f(x)がある。$
$この関数が任意の実数x,yについて恒等式$
$$f(x^2+y)=f(kx^2+2y)-f(3x^2)$$
$を満たすとき、定数kの値を求めよ。$

shippe

公開日時: 2025年9月5日23:52 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ

整数 数学

問題文

₁₃₅C₃₀を7で割った余りを求めてください。

解答形式

半角数字で入力してください。

kinonon

公開日時: 2025年9月3日21:18 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

三角形 $ABC$ において,角 $A,B,C $の傍接円の半径をそれぞれ $r_A,r_B,r_C$ とし,内接円の半径を $r $とする.このとき,三角形 $ABC$ が以下の条件を満たすとき$r_A\cdot r_B\cdot r_C \cdot r$の最大値を求めよ.
$$BC=28,∠BAC=60 $$

解答形式

自然数となるので、その値を入力してください

Weskdohn

公開日時: 2025年9月3日17:58 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

次の等式を満たすような $10000$ 以下の正整数の組 $(a,b,c)$ の個数を求めて下さい.

$$160a^2+153b^2+25c^2=24ab+96bc+72ac$$

解答形式

半角数字で入力して下さい.

smasher

公開日時: 2025年9月3日11:25 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

以下の連立方程式を満たすような実数の組$(a,b,c,d)$の個数を求めよ。
$$
\begin{cases} ab^2c^3d^4=1 \\ a^4bc^2d^3=1\\a^3b^4cd^2=1\\a^2b^3c^4d=1\end{cases}
$$

解答形式

半角数字で個数を入力してください。

udonoisi

公開日時: 2025年8月31日21:55 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$\alpha^5-1=0$ を満たす複素数 $\alpha$ に対して関数 $f$ を $f(x)=\alpha x+1$ で定義したとき,
$f^{100}(1)$ としてありうる値の総和をすべて求めてください. ただし,$f^{100}(x)$ は $f$ を $100$ 回合成した関数とします.

解答形式

例)非負整数を答えてください.

追記

ごめんなさい解答形式を書いてなかったです

Ryomanic

公開日時: 2025年8月30日22:57 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

円Oが存在して、円O上に点A,B,C,Dをこの順に配置する。角ABD、角DCAそれぞれの二等分線の交点をE、角BAC、角CDBそれぞれの二等分線の交点をF、BDとACの交点をG、△ABG、△DCGそれぞれの内心をI,I’とする。
$$AB=\frac{19}{2},EF=11,△ABI=\frac{19}{2} $$
の時、四角形EIFI’の面積を求めよ。

解答形式

求める値は互いに素な正整数a,bでa/bと表せるので、a+bを解答してください。

kikutaku

公開日時: 2025年8月27日15:16 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ


問題文

太郎君は次のルールで行動する:
前日に花子さんで抜いた場合、次の日に抜く確率は$\frac{1}{5}$
前日に花子さんで抜かなかった場合、次の日に抜く確率は$\frac{2}{3}$
今日花子さんで抜かなかったとき$n$日後に抜く確率を$P_n$とする。
$n \to \infty$のときの$P_n$を、小数点5位を四捨五入して、小数点4位まで求めよ。

解答形式

答えのみ記入

piroshiki

公開日時: 2025年8月27日4:12 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

一辺が$1$の正方形$ABCD$の頂点$A$から、動点$P$を$0 \leqq \angle\mathrm{DAE} \leqq π/2$となる辺$BC,CD$上の点$E$へ向かって直進させることを考える。いずれかの辺に触れたときは入射角と反射角が等しくなるように反射させ、頂点に触れたときは入射角を$π/2$として考える。
このとき点$P$が$2$進んだ後の点の軌跡で囲まれた領域の面積$S$を求めよ。

解答形式

$S$は$a/b$の形で表されるため、$b$を有理化した既約分数で回答すること。
$a=2√2-1,b=√2$の場合は、「$4-√2/2$」と回答する。

piroshiki

公開日時: 2025年8月27日3:27 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

代数

問題文

$\lim\limits_{n\to\infty} n\sin\frac{2π}{n} = mπ$ である。
$m$の値を求めよ。

解答形式

$m$は2つの実数$a,b$を使って $\frac{a}{b}$と表せる。
$m$を分母が有理化された既約分数の形にした時の$a+b$を解答すること。

shakayami

公開日時: 2025年8月27日0:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


三角形 $ABC$ について, 内心を $I$ , $A$ に関する傍心を $I_A$ , $\angle A$ の二等分線と $BC$ の交点を $D$ , 三角形 $ABC$ の外接円上の点であって, 点 $A$ を含まない方の弧 $BC$ の中点を $M$ とします.

$AM=27,MI_A=8$ のとき, $ID$ の長さを求めてください. ただし, 答えは有理数となるため, 既約分数 $a/b$ と書いたときの $a+b$ を答えてください.

kikutaku

公開日時: 2025年8月26日11:54 / ジャンル: 数学 / カテゴリ: 算数 / 難易度: / ジャッジ形式: 採点者ジャッジ


問題文

2022^2022を10で割った余り。

解答形式

どうやってといたかもかいてね。
ひらがなでいいよ。
これはさんすうだからね。