数学の問題一覧

カテゴリ
以上
以下

整数問題 解説あり

sulippa 自動ジャッジ 難易度:
4月前

54

問題文

次の方程式を満たす、素数 $p$ と正の整数 $n, m$ の組 $(p, n, m)$ を全て求めよ。
$$ p^n + 144 = m^2 $$

解答形式

条件を満たす組中の数字の総和を半角で入力してください

面積比

taku1729 自動ジャッジ 難易度:
4月前

5

問題文

△ABCについて、Aから直線BCに下ろした垂足をD、点Bから直線CAに下ろした垂足をE、△ABCの垂心をHとしたとき以下が成立しました。$$AH=3,AE=2,AC=5$$△AHB:△HCDは互いに素な自然数a,bを用いてa:bと表せるのでa+bの値を解答してください。

解答形式

半角数字を入力してください。

幾何

katsuo_temple 自動ジャッジ 難易度:
4月前

8

問題文

九点円中心を$N$とする鋭角三角形$ABC$において,$BN$と$AC$の交点を$P$,$CN$と$AB$の交点を$Q$とする.直線$AC$に関して$B$と対称な点を$B'$,直線$AB$に関して$C$と対称な点を$C’$とし,$B'Q$と$C'P$の交点を$X$とするとき,以下が成立しました.$$\angle BAX=\angle NAX \tan\angle ACB=\frac{5}{6} AB=10$$このとき,三角形$ABC$の面積を求めて下さい.

解答形式

半角で解答して下さい.

300N

poino 自動ジャッジ 難易度:
4月前

13

問題文

素数 $p,q,r,s$ が
$$p+q=r+s,pq+|p-q|=rs+|r-s|,pq≠rs$$
をみたすとき,$pq+rs$ としてあり得る値の総和を求めてください.

解答形式

半角数字で入力してください。

CpSLSL

Weskdohn 採点者ジャッジ 難易度:
4月前

2

問題文

次を満たすような正整数の組 $(x,y,z)$ をすべて求めてください.
$$2^x+9^y+2025=2009^z-65-28$$

解答形式

簡単な証明をお書き下さい.

WMC(H)

Weskdohn 自動ジャッジ 難易度:
4月前

7

問題文

接点・共通領域を持たない円A,Bがあり,これらの中心を通る直線lとの交点をP,Q,R,Sとします.(P≠Q≠R≠S)
 但しP,QがAの円周上,R,SがBの円周上にあり,P,Q,R,Sの順に並ぶとします.

またPS,QRの長さをそれぞれa,bと置きます.

この時A,Bの共通内接線の長さが2025となるような(a,b)の組として考えられるものは何通りありますか.

解答形式

答えだけ(答えが1通りなら"1"だけ)を半角数字で解答して下さい.

WMC(J)

Weskdohn 採点者ジャッジ 難易度:
4月前

14

問題文

聖くんと光くんはトランプゲームを行うことにした.

なお,$1$ から $13$ までの数字が書かれたトランプをそれぞれ四枚ずつ用いる.

ルールは以下の通り.
- 聖くんはトランプを $1$ 枚から$3$ 枚まで引くことができる.
- 光くんは幾つかの質問をして,聖くんが引いたトランプに書かれた数字を回答する.

光くん「書かれた数字の和を教えて」
聖くん「$31$ だよ」
光くん「うーん難しいな……なにかヒントくれない?」
聖くん「トランプに書かれた数字の積を求めたら、各位の和は $2$ になったよ」

光くんが引いたトランプの目として考えられるものを全て求めなさい。

解答形式

答えが1,2,4の場合は(1,2,4)と入力して下さい.(小さい順に)

WMC(G)

Weskdohn 自動ジャッジ 難易度:
4月前

23

問題文

$R_{a}をa$桁のレピュニット数とします.
$R_{24}$を素因数分解しなさい.
但しレピュニット数とは,各桁が全て$1$である数のことを指します.

解答形式

ある相異なる正整数$a_{1}…a_{10}$を用いて,
$R_{24}=a_{1} \times a_{2} \times … \times a_{10} $と書けるので,$a_{1}+…+a_{10}$の値を求め,その値を半角数字で入力して下さい.

WMC(M)

Weskdohn 自動ジャッジ 難易度:
4月前

26

問題文

整数$x,y$を用いて$131560x+133650y=z$と書ける正整数 $z$ のうち,最小のものを求めてください.

解答形式

半角数字で回答して下さい.

WMC(E)

Weskdohn 自動ジャッジ 難易度:
4月前

26

問題文

SKG学院では,5×5のマス目を使い,とあるゲームが行われている.
ゲームのルールは以下である.
・お客さんと生徒がじゃんけんをする.勝った方が先手,負けた方が後手となる.
この時,あいこは考えないものとする.
・先手は黒の碁石,後手は白の碁石を,マスの上に交互に置いていく.
・同じマスには碁石は一つまでしか置けない.
・マス目が全て埋まった時,各行について次の条件を満たすものを特別な行と呼び,その個数を数える.
特別な辺:ある行の5マスを見た時,お客さんが置いた碁石の個数が偶数個であるもの.
・特別な行の個数が偶数であればお客さんの勝ち,奇数であれば生徒の勝ちとなる.

お客さんが勝つ確率をA,お客さんが勝つ時の碁石の置き方の総数をBとする.
A×Bの値を求めなさい.
但し,回転して重なるような碁石の置き方は区別しないとする.

解答形式

半角数字で入力して下さい.

WMC(D)

Weskdohn 自動ジャッジ 難易度:
4月前

11

問題文

SKG学院の文化祭では,1から10の目が一つずつ書かれた十面体の歪んだダイスを配布しています.このダイス十個に$1$から$10$までの番号をつけることにしました.
ここで以下のような事実が分かっています.
また$1≦n≦10$を満たす任意の整数$n$について,番号$s$がついたダイスを一回振って$n$の目が出る確率を$a_{n^s}$と書くことにします.

・$a_{1^s}:a_{2^s}…a_{9^s}:a_{10^s}=1^s:2^s\cdots9^s:10^s$を満たす.

この十個のダイスを同時に一回振る時,出目の積の期待値を求めて下さい.

解答形式

半角数字で入力して下さい.

WMC(F)

Weskdohn 自動ジャッジ 難易度:
4月前

12

問題文

次の虫食い算について,SUKEN=?

解答形式

半角数字で入力して下さい.
但しS≠E≠I≠K≠O≠U≠Nとします.