数学の問題一覧

カテゴリ
以上
以下

自作2

tomorunn 自動ジャッジ 難易度:
32日前

8

問題文

太郎君は遅刻魔で、よく遅刻をする。
それを見かねた先生は、
・3日連続で遅刻したら特別指導
・10日間の間に6回以上遅刻をしたら特別指導
というルールを設けた。このとき、10日間で太郎君が特別指導を受けないよう登校する方法は合計何通りあるか。

解答形式

例)半角数字で入力してください。

自作3

tomorunn 自動ジャッジ 難易度:
32日前

4

問題文

モニターに0が表示されている。ここには3つのボタンがあり、
・ボタン$A$を押すとモニターの数字が1増える。
・ボタン$B$を押すとモニターの数字が2増える。
・ボタン$C$を押すとモニターの数字が3増える。
ボタン$A~C$をそれぞれ任意の回数押したとき、
最後に表示される数字が300以下の非負の3の倍数となるようなボタンの押し方の総数を求めよ。ただし、ボタンを押す順番は区別しない。

解答形式

例)半角数字で入力してください。


問題文

$ $ 次の等式をみたす正整数の組 $(x, y, z)$ の個数を求めて下さい.
$$x^3 + 2x^2y + x^2z + xy^2 + xyz = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19$$

解答形式

半角英数にし,答えとなる非負整数値を入力し解答して下さい.

整数

sulippa 採点者ジャッジ 難易度:
33日前

2

問題文

$n ≧2$を整数、$p $を素数とする。正の整数 $x$ についての方程式
$x^n - (x-p)^n = p^n$
を考える。
$p$ が奇素数であり、$p$が $x$ を割り切らないとき、この方程式は解を持たないことを示せ。

解答形式

何の定理を使用したかを明確にされた上で、数式を出来るだけ省いてもらった形の簡単な証明で構いません

tanは有理数か

suth 自動ジャッジ 難易度:
33日前

11

tan1°は有理数か

はいorいいえで答えてね!

(解答が間違っていました。すみませんでした。修正しました.)

34日前

2

3辺の長さがそれぞれ自然数の三角形であり、3辺の長さの合計が1200になるという。このような条件を満たす三角形の個数を求めよ。

37日前

14

次の問題のxとyを求めてください。

3x➕2y🟰x➖y🟰2x➖3y➖7

x=○○、y=○○
の形で回答してください。
xとyは小文字です。
マイナスが付く場合はひらがなの延ばし棒を記入してください。

重心内心の距離

sulippa 自動ジャッジ 難易度:
37日前

5

問題

三角形の重心を G、内心を I、内接円の半径を $r$ 、外接円の半径を$R$とする。もし $GI=r$ が成り立つとき、この条件を満たす非退化な三角形が存在するための、$R/r$ の最小値を求めよ。

解答形式

1行目に分子
2行目に分母を書いてください
半角で、根号が含まれる場合
√(17) √(41+5√(19)) 2√(15)+3√(17)
このように括弧を付けてください
また、指数が小さい順、同じ次数のものは小さい数のものから並べてください
例:√10+√15+1 ³√15+√17+9

整数問題

judgeman 自動ジャッジ 難易度:
40日前

16

問題文

$n$を$2025$以下の正整数とする。
ある$n$について、$(n^{2}+n+1)(n^{3}+n^{2}-2n)$がもつ素因数$2$の個数を$d(n)$で表す。
$d(n)=1$となるような$n$の個数を求めよ。

解答形式

半角数字で入力してください。

第3問

sulippa 採点者ジャッジ 難易度:
42日前

2

問題文

$gcd(x,y,z)=1$を満たす$x,y,z$について、 $x^2+y^2, y^2+z^2, z^2+x^2 $がすべて正の整数の平方となるとき、次の問いに答えよ。
(1) $x,y,z$ のうち、奇数であるものの個数は高々1つであることを示せ。
$x $を奇数、 $y, z$ を4の倍数とする。
(2) $y=44 $のとき、上記の条件を満たす正の整数$ x, z $の組を全て求めよ。

解答形式

(1)は簡潔な証明
(2)は答えだけで構いません

第1問

sulippa 採点者ジャッジ 難易度:
42日前

1

問題文

$p$ は $gcd(p, 10) = 1$ を満たす $p > 1$ の素数とする。
$\frac{1}{p}$ の小数表示における循環節を $C_1C_2...C_L$ とし、その長さを $L$ とする (すなわち $L = ord_p(10)$ である)。
循環節を構成する数字の並びから、以下の2つの整数を定義する。
1. $N_0 = C_1C_2...C_L$ (これを10進法の整数として評価した値)
2. $N_1 = C_2C_3...C_LC_1$ (同様に10進法の整数として評価した値)
また、$C_1 = \lfloor \frac{10}{p} \rfloor$ (すなわち $\frac{1}{p}$ の小数第1位の数字) とする。

以下の2つの条件 (A) と (B) を同時に満たすような、全ての組 $(p, q)$ を求めよ。
(A) $N_1 = qN_0$ が成り立つ。ここで $q$ は $q \ge 2$ を満たす整数である。
(B) $L = q - C_1$ が成り立つ。

解答形式

ある程度解答の方針を示した上で、
解を答えて下さい

第2問

sulippa 採点者ジャッジ 難易度:
42日前

0

問題文

$p $を 3 以上の素数とする。$X = (p-1)! $とおく。
次の和 S を考える。
(1) $S = X^X + X^{pX}$
$S $を $p^2 $で割った余りを求めよ。
(2)$p$ を $3$ 以上の素数とし、$X=(p-1)!$ とおく。
$k=1, 2, \dots, p-1$ に対して、$A_k = k^{(X^p)}$ および $B_k = (X^k)^{(p-1)}$ と定義する。
次の和 $S$ を考える。
$$S = \sum\nolimits_{k=1}^{p-1} (A_k + B_k)$$
$S$ を $p^2$ で割った余りを求めよ。