数学の問題一覧

カテゴリ
以上
以下

第1問

sulippa 採点者ジャッジ 難易度:
29日前

3

問題文

3辺の長さがすべて整数である直角三角形を考える。その斜辺を$a$、直角を挟む2辺を$b, c$とする。

これらの辺の長さが、以下の関係式を満たしているという。
$$7a = 5(b+c)$$
この条件を満たす全ての直角三角形のうち、斜辺 $a$ が$10$の倍数であり、かつ $a < 200$ であるもの全てを考える。

それらの三角形の、面積の総和を求めよ。

解答形式

半角でスペースなし

第3問

sulippa 採点者ジャッジ 難易度:
29日前

0

問題文

3辺の長さがすべて整数である直角三角形を考える。
その面積を$S$、内接円の半径を$r$、斜辺を$a$とする。

これら3つの量の間に、「面積$S$を斜辺$a$で割ったときの余りが、内接円の半径$r$に等しい」という関係が成り立つ全ての直角三角形のうち、周長が$1000$未満であるものを全て求め、それらの斜辺の長さの総和を求めよ。

解答形式

半角スペースなし

OMC不採用問題2

Tehom 自動ジャッジ 難易度:
32日前

4

問題文

次の式の値は互いに素な正の整数 $p,q$ を用いて $\displaystyle \frac{q}{p}$ と表せるので,$p+q$ の値を解答してください.
$$\displaystyle \sum_{n=1}^{10} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{(n-1)!(i+j)!(2n-i-j)!}{i!j!(2n)!(n-i)!(n-j)!}$$

解答形式

半角数字で解答してください.

平面図形

taku1729 自動ジャッジ 難易度:
32日前

6

問題文

△ABCの内心をI、△ABCの外接円とAIの交点をL(≠A)、AB上にD(≠A,B)をとったとき以下が成立しました。$$LI=LD,AI=4,AD=5,BL=8$$DBの長さを解答してください。

解答形式

半角数字で入力してください。

第3問

sulippa 自動ジャッジ 難易度:
36日前

6

問題

$P(x)$ は整数係数の monic な (最高次の係数が1の) 3次多項式 であるとする。方程式 $P(x) = 0$ は、相異なる3つの整数解を持 つことが分かっている。
$P(0)=6$
$P(1)=4$
のとき、$P(4)$の値を求めよ。

解答形式

半角でスペースなし

第2問

sulippa 自動ジャッジ 難易度:
36日前

8

問題文

$P(x)$ は整数係数の3次多項式である。
すべての整数$ n $に対して、$P(n)+1$ は常に立方数となるとする
$P(0)=7$ および $P(1)=26$ が成立している。
このとき、$P(2)-P(-1)$ の値を求めよ。

回答形式

半角スペースなし

第1問

sulippa 自動ジャッジ 難易度:
36日前

2

問題文

3次の多項式 $P(x)$ は整数係数を持ち、すべての係数が整数であるとする。
0 でないある整数 $M$ について、$P(x)$ は以下の条件を満たす。
$kP(k) = M (k=1, 2, 3, 4)$
このとき、M が取りうる最小の正の整数値を求めよ。

解答形式

半角でスペースなし

組み合わせ

suth 自動ジャッジ 難易度:
37日前

4

1から2pの2p個の異なる自然数を全て並べる時に隣り合う二つの積が常に偶数になる通りをSpとするとき、それがpで最大何回割れるか答えろ.
(ただしpは素数とする)

(半角の自然数が答え)

自作2

tomorunn 自動ジャッジ 難易度:
37日前

8

問題文

太郎君は遅刻魔で、よく遅刻をする。
それを見かねた先生は、
・3日連続で遅刻したら特別指導
・10日間の間に6回以上遅刻をしたら特別指導
というルールを設けた。このとき、10日間で太郎君が特別指導を受けないよう登校する方法は合計何通りあるか。

解答形式

例)半角数字で入力してください。

自作3

tomorunn 自動ジャッジ 難易度:
37日前

4

問題文

モニターに0が表示されている。ここには3つのボタンがあり、
・ボタン$A$を押すとモニターの数字が1増える。
・ボタン$B$を押すとモニターの数字が2増える。
・ボタン$C$を押すとモニターの数字が3増える。
ボタン$A~C$をそれぞれ任意の回数押したとき、
最後に表示される数字が300以下の非負の3の倍数となるようなボタンの押し方の総数を求めよ。ただし、ボタンを押す順番は区別しない。

解答形式

例)半角数字で入力してください。


問題文

$ $ 次の等式をみたす正整数の組 $(x, y, z)$ の個数を求めて下さい.
$$x^3 + 2x^2y + x^2z + xy^2 + xyz = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19$$

解答形式

半角英数にし,答えとなる非負整数値を入力し解答して下さい.

整数

sulippa 採点者ジャッジ 難易度:
38日前

2

問題文

$n ≧2$を整数、$p $を素数とする。正の整数 $x$ についての方程式
$x^n - (x-p)^n = p^n$
を考える。
$p$ が奇素数であり、$p$が $x$ を割り切らないとき、この方程式は解を持たないことを示せ。

解答形式

何の定理を使用したかを明確にされた上で、数式を出来るだけ省いてもらった形の簡単な証明で構いません