$ $ 次の等式をみたす正整数の組 $(x, y, z)$ の個数を求めて下さい.
$$x^3 + 2x^2y + x^2z + xy^2 + xyz = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19$$
半角英数にし,答えとなる非負整数値を入力し解答して下さい.
3辺の長さがそれぞれ自然数の三角形であり、3辺の長さの合計が1200になるという。このような条件を満たす三角形の個数を求めよ。
次の問題のxとyを求めてください。
3x➕2y🟰x➖y🟰2x➖3y➖7
x=○○、y=○○
の形で回答してください。
xとyは小文字です。
マイナスが付く場合はひらがなの延ばし棒を記入してください。
$p$ は $gcd(p, 10) = 1$ を満たす $p > 1$ の素数とする。
$\frac{1}{p}$ の小数表示における循環節を $C_1C_2...C_L$ とし、その長さを $L$ とする (すなわち $L = ord_p(10)$ である)。
循環節を構成する数字の並びから、以下の2つの整数を定義する。
1. $N_0 = C_1C_2...C_L$ (これを10進法の整数として評価した値)
2. $N_1 = C_2C_3...C_LC_1$ (同様に10進法の整数として評価した値)
また、$C_1 = \lfloor \frac{10}{p} \rfloor$ (すなわち $\frac{1}{p}$ の小数第1位の数字) とする。
以下の2つの条件 (A) と (B) を同時に満たすような、全ての組 $(p, q)$ を求めよ。
(A) $N_1 = qN_0$ が成り立つ。ここで $q$ は $q \ge 2$ を満たす整数である。
(B) $L = q - C_1$ が成り立つ。
ある程度解答の方針を示した上で、
解を答えて下さい
$p $を 3 以上の素数とする。$X = (p-1)! $とおく。
次の和 S を考える。
(1) $S = X^X + X^{pX}$
$S $を $p^2 $で割った余りを求めよ。
(2)$p$ を $3$ 以上の素数とし、$X=(p-1)!$ とおく。
$k=1, 2, \dots, p-1$ に対して、$A_k = k^{(X^p)}$ および $B_k = (X^k)^{(p-1)}$ と定義する。
次の和 $S$ を考える。
$$S = \sum\nolimits_{k=1}^{p-1} (A_k + B_k)$$
$S$ を $p^2$ で割った余りを求めよ。